1 **Title**

- 2 Reliability of various diastasis measurement methods on weightbearing radiographs in
- 3 patients with subtle Lisfranc injuries

4 Abstract

5	Objective. This study aimed to evaluate the reliability of the diastasis measurements
6	between the medial cuneiform and the second metatarsal on weightbearing radiography.
7	Materials and Methods. We retrospectively examined 18 patients who underwent open
8	surgery for subtle Lisfranc injuries. Preoperative weightbearing radiography of the
9	affected and unaffected feet was evaluated in all patients. The diastasis between the
10	medial cuneiform and the second metatarsal was measured in both feet using the
11	following four methods: diastasis between parallel lines, distal-point diastasis, middle-
12	point diastasis, and proximal-point diastasis. Intraclass correlation coefficients with
13	consistency of agreement were calculated to evaluate inter- and intraobserver reliability.
14	<i>Results</i> . The intra- and interobserver reliabilities of all four methods were good.
15	Intraclass correlation coefficients for intraobserver reliability ranged from 0.87 to 0.93.
16	Those for interobserver reliability ranged from 0.81 to 0.91.
17	Conclusions. The reliabilities of the diastasis measurement methods between the medial
18	cuneiform and the second metatarsal on weightbearing radiography were good.
19	Measuring the diastasis between the medial cuneiform and the second metatarsal on
20	weightbearing radiography is useful in evaluating subtle injuries when uniform
21	measurement methods are used.

23 Keywords

subtle Lisfranc injuries; weightbearing radiograph; reliability; diastasis

25

26 Introduction

27 Lisfranc injuries were originally described as a partial or complete dislocation of the tarsometatarsal joints in 1909 [1]. Epidemiologic studies performed in the United States 28 showed that the incidence of Lisfranc injuries is approximately 1 in 55,000 [2]. The 29 30 Lisfranc ligament affected by injury is a thick oblique ligament extending from the base 31 of the second metatarsal to the plantar aspect of the medial cuneiform (C1). The 32 Lisfranc ligament is important for stability at the tarsometatarsal joint because there is 33 no transverse metatarsal ligament between the first and second metatarsals (M2) as is the case between the second and fourth metatarsals. Lisfranc injuries are divided into 34 35 severe and subtle injuries based on the trauma mechanism [3, 4]. Subtle injuries result 36 from indirect low-energy traumas such as twists and sprains [3, 5] and can be difficult to 37 diagnose because of their variable clinical presentations and radiographic findings [6-8]. 38 Subtle injuries are commonly evaluated using one or more of the following imaging modalities: non-weightbearing radiography (non-WBR), weightbearing radiography 39

40	(WBR), computed tomography, weightbearing computed tomography, magnetic
41	resonance imaging, and ultrasonography [8-11]. Several studies have reported that
42	weightbearing imaging has a higher sensitivity for detecting subtle injuries compared
43	with non-weightbearing imaging [2, 12]. Weightbearing computed tomography is
44	particularly useful to evaluate subtle injuries [8, 10, 11]. A method to measure the
45	diastasis between C1 and M2 using this modality has been proposed [8]. However,
46	weightbearing computed tomography is not available in all institutions and the
47	measurement methods have not been standardized [11, 13]. Therefore, WBR remains
48	the most useful modality for primary evaluation and diagnosis [8, 13, 14].
49	Various measurement methods have been used in the radiographic assessment of
50	Lisfranc injuries [2, 3, 7, 8, 10-12, 15]. In particular, the measurement of C1-M2
51	diastasis on WBR is important to determine the appropriate treatment of Lisfranc
52	injuries [11, 16]. However, a specific method for C1-M2 diastasis measurement has not
53	been established, and no studies have reported measurement reliability. We expect that
54	the standardization of C1-M2 diastasis measurements might lead to the appropriate
55	treatment of subtle injuries.
56	The aim of this study was to establish a method of C1-M2 diastasis measurement on
57	WBR, and to evaluate the reliability of these C1-M2 diastasis measurements.

5	Q
J	Ο

59 Materials and methods

60 We examined 26 consecutive patients who underwent open surgery for a subtle 61 tarsometatarsal injury of the first and second columns from January 2013 to September 62 2019 and had a Lisfranc ligament tear confirmed by direct intraoperative visualization. 63 Informed consent was obtained from all individual participants included in this study. Seven patients unable to bear weight because of severe pain or multiple fractures were 64 excluded. Another patient was excluded because of a history of previous foot surgery. 65 Finally, 18 patients (8 men and 10 women) were included for analysis. Mean patient age 66 was 25.8 ± 10.7 years (range, 14–46). The injury was on the right in 8 patients and the 67 left in 10. Two patients had a C1 fracture and four exhibited the fleck sign on 68 69 radiography. All injuries were classified according to the Nunley and Vertullo system 70 for Lisfranc injuries [3]. Subtle injury was defined according to the criteria of 71 Faciszewski [17]: 1) diastasis between the bases of the first metatarsal (M1) and M2 72 that measures 2–5 mm by anterior-posterior radiography; 2) no other foot injury, 73 including fracture or subluxation of the fourth or fifth metatarsal cuboid articulations by 74 oblique radiography; and 3) no subluxation of the base of M1 relative to C1 [17, 18]. Patient characteristics are summarized in Table 1. Anterior-posterior WBR of the 75

76	affected and unaffected feet was performed with the central beam oriented 15 degrees
77	from the vertical and aimed at the center of the navicular while the patient was standing
78	upright on both feet [19]. Radiographic parameters were measured using a picture
79	archiving and communications system with a uniform image expansion rate (350%).
80	We used the following four methods to measure C1-M2 diastasis on WBR in affected
81	and unaffected feet: 1) diastasis between parallel lines (distance between parallel lines
82	drawn along the C1-M2 articular surface); 2) distal-point diastasis (distance between the
83	distal end of the C1-M2 articular surface); 3) middle-point diastasis (distance between
84	the middle points of the C1-M2 articular surface); and 4) proximal-point diastasis
85	(distance between the proximal end of the C1-M2 articular surface) (Figure 1). In some
86	cases, the C1-M2 articular surface appeared to have a double floor related to the rotation
87	of C1 associated with subtle Lisfranc injuries and differences in anatomical features.
88	Such cases are defined as double floor in this study. When C1 and/or M2 had a double
89	floor appearance, the longest distance between C1 and M2 was measured (Figure 2).
90	WBR was independently assessed by four observers in accordance with previous studies
91	[20, 21]; two were senior orthopedic surgeons with 10 or more years of experience and
92	two were orthopedic surgery residents with 3 to 7 years of experience. The first observer
93	measured the C1-M2 diastasis three times at intervals of one month.

94	Statistical analyses were performed using Statistical Package for the Social Sciences
95	version 23.0 software (IBM Corp., Armonk, NY, USA). Clinical data are presented as
96	means with standard deviation, numbers with percentage, or ranges. Continuous
97	variables were compared using the Mann–Whitney U-test. Intraclass correlation
98	coefficients (ICCs) with consistency of agreement were calculated to evaluate
99	intraobserver reliability between the three measurements performed by the first observer
100	and interobserver reliability between the four observers. Power analysis was performed
101	using R software version 2.8.1 (www.r-project.org): 18 patients exceeded the minimum
102	number of patients required to enable the accurate calculation of intra- and interobserver
103	reliabilities. Post hoc power analysis to evaluate ICC showed that the statistical analysis
104	performed was appropriate. $P < 0.05$ was considered statistically significant.
105	
106	Results
107	The measurements obtained by the first observer using each of the four methods are
108	shown in Table 2. All measurements of the C1-M2 diastasis on the affected side were
109	significantly greater than those on the unaffected side by 2 mm or more (range, 2.14-
110	2.35; <i>P</i> <0.01).

111 The intra- and interobserver reliabilities of the measurements obtained by the four

112	observers using each method are shown in Table 3. In the measurements of the
113	unaffected side, the highest intraobserver reliability was seen for the middle-point
114	diastasis and diastasis between parallel lines methods (ICC 0.93). In the measurements
115	of the affected side, the highest intraobserver reliability was seen for the distal-point
116	diastasis method (ICC 0.92), followed by the diastasis between parallel lines method
117	(ICC 0.87). In the measurements of the unaffected side, the highest interobserver
118	reliability was seen for the middle-point diastasis method (ICC 0.91), followed by the
119	proximal-point diastasis and distal-point diastasis methods (ICC 0.89). In the
120	measurements of the affected side, the highest interobserver reliabilities were seen for
121	the diastasis between parallel lines and middle-point diastasis methods (ICC 0.88). The
122	intra- and interobserver reliabilities of all methods were good. ICCs for intraobserver
123	reliability ranged from 0.88 to 0.93 on the unaffected side and from 0.87 to 0.92 on the
124	affected side. ICCs for interobserver reliability ranged from 0.81 to 0.91 on the
125	unaffected side and from 0.84 to 0.88 on the affected side.
126	

Discussion

All WBR C1-M2 diastasis measurement methods (diastasis between parallel lines,
distal-point diastasis, middle-point diastasis, and proximal-point diastasis) used to

130	evaluate subtle Lisfranc injuries in this study had high levels of inter- and intraobserver
131	agreement. Therefore, C1-M2 diastasis measurement on WBR appears to be useful in
132	evaluating subtle injuries when uniform measurement methods are used.
133	Subtle injuries are difficult to diagnose and treat properly because of their various
134	clinical manifestations. Therefore, imaging tests have an important role in the accurate
135	diagnosis of subtle injuries and various imaging modalities are used [8-11]. CT provides
136	good accuracy in visualizing osseous morphology [8, 11]. Recent studies have shown
137	that WBCT is useful for evaluating subtle injuries [8, 10, 11] and proposed a WBCT
138	C1-M2 diastasis measurement method [8]. However, currently, it is difficult to
139	investigate subtle injuries using WBCT because the method has not been standardized
140	and it is not currently performed in all institutions [11, 13]. MRI is the superior modality
141	to detect ligamentous abnormalities [11]. Despite its high sensitivity and specificity,
142	MRI has several disadvantages. First, MRI is costly and not always readily available.
143	Second, it is difficult to perform under weightbearing conditions and for the exact
144	measurement of C1-M2 diastasis [11]. A recent systematic review recommended a
145	diagnostic algorithm to guide their imaging [11]. Investigations should begin with
146	radiography [10-12, 19, 22]. However, up to 50% of subtle Lisfranc injuries can be
147	missed on non-WBR [3, 10]; therefore, WBR should be included [3, 23]. WBR is the

148	preferred primary evaluation modality because of its ease and simplicity [13, 14]. In a
149	cadaveric study, Panchbhavi et al. [23] found that bone displacement significantly
150	differed between weightbearing and non-weightbearing conditions and reported that
151	WBR of both feet was required to compare the affected and unaffected feet in patients
152	with a high suspicion of injury. Nunley et al. [3] reported good treatment outcomes in
153	athletes with Lisfranc injuries classified according to WBR, which was found to be
154	sensitive, reproducible, and relatively inexpensive. WBR assessment of diastasis
155	remains an effective primary evaluation tool in patients with Lisfranc injuries.
156	Diastasis resulting from Lisfranc injuries can be radiographically assessed using
157	various methods. These include the measurement of tarsometatarsal joint alignment
158	along the medial borders of the second metatarsal and the middle cuneiform [11],
159	distance between the proximal parts of M1 and M2 [24], distance between C1 and M2
160	[17, 21], distance between C1 and the middle cuneiform bone [15], and others (Figure
161	3). The current consensus is that articular instability is indicated by the presence of C1-
162	M2 diastasis on WBR [2, 8, 16, 22]. Seo et al. [15] examined the accuracy of the
163	radiological diagnosis of Lisfranc injuries and found that the diagnostic sensitivity and
164	specificity of radiographic C1-M2 diastasis (>2 mm distance between C1 and M2 in the
165	anterior-posterior view) for unstable injury were 0.92 and 1, respectively. However,

166	previous studies did not describe the specific anatomical C1 and M2 landmarks used as
167	measurement reference points [15, 21, 24]. This lack of standardization can affect
168	measurements and explain measurement differences between our and previous studies
169	[11, 15, 19, 21]. Uniform diastasis measurement methods are important when evaluating
170	subtle injuries.
171	Measurement reproducibility (intraobserver reliability) and reliability (interobserver
172	reliability) are also important when evaluating methods of measurement [12].
173	Intraobserver reliability mathematically evaluates the test-retest reliability of a method
174	[25] while interobserver reliability evaluates measurement correlations between
175	observers [12, 26]. Ponkilainen et al. investigated inter- and intraobserver reliability and
176	accuracy of non-WBR for Lisfranc injury diagnosis [12]. Although the diagnosis of
177	Lisfranc injuries based on non-WBR had moderate interobserver agreement and
178	substantial intraobserver agreement at different time points, they did not report the
179	measurement accuracy reliability. To the best of our knowledge, our study is the first to
180	examine the reliability of measurement accuracy on WBR. Sripanich et al. assessed the
181	intra- and interobserver reliability of four measurements of C1-M2 diastasis on the
182	unaffected side on weightbearing computed tomography: ICCs for intraobserver
183	reliability ranged from 0.71 to 0.84 and those for interobserver reliability ranged from

184	0.65 to 0.81 [8]. Our study demonstrated nearly equivalent reliabilities with WBR using
185	uniform measurement methods.
186	Our study had several limitations. First, WBR was evaluated by senior orthopedic
187	surgeons and orthopedic surgery residents who are familiar with Lisfranc injuries rather
188	than radiologists. However, orthopedic surgeons often evaluate radiographic findings
189	without radiologist input or assistance in clinical practice. Second, this study did not
190	evaluate WBR validity or weightbearing computed tomography because of its
191	retrospective nature. Third, the sample size was small, which may have introduced bias.
192	However, large-scale studies of Lisfranc injuries are difficult to perform because of their
193	relative rarity; such studies would require an extended period to enroll a large number of
194	patients.
195	In conclusion, the inter- and intraobserver reliabilities of the diastasis between parallel
196	lines, distal-point diastasis, middle-point diastasis, and proximal-point diastasis methods
197	for measuring C1-M2 diastasis were good for assessing the presence of Lisfranc injuries
198	on WBR. Therefore, WBR is useful to evaluate subtle injuries when uniform
199	measurement methods are used.
200	

201 Acknowledgment

202	We thank Edanz	(https://jp.edanz.com/ac	for editing a draft	of this manuscript.

204	Compliance with Ethical Standards
205	Conflict of Interest
206	The authors declare that they have no conflict of interest.
207	
208	Ethical Approval
209	All procedures performed in studies involving human participants were in accordance
210	with the ethical standards of the institutional and/or national research committee and
211	with the 1964 Helsinki declaration and its later amendments or comparable ethical
212	standards.
213	
214	Informed Consent
215	Informed consent was obtained from all individual participants included in the study.
216	
217	References
218	1. Ponkilainen VT, Laine HJ, Mäenpää HM, Mattila VM, Haapasalo HH.
219	Incidence and Characteristics of Midfoot Injuries. Foot Ankle Int. 2019; 40(1):105-112.

220	2. Watson TS, Shurnas PS, Denker J. Treatment of Lisfranc joint injury: current
221	concepts. J Am Acad Orthop Surg. 2010; 18(12):718-728.
222	3. Nunley JA, Vertullo CJ. Classification, investigation, and management of
223	midfoot sprains: Lisfranc injuries in the athlete. Am J Sports Med. 2002; 30(6):871-878.
224	4. Renninger CH, Cochran G, Tompane T, Bellamy J, Kuhn K. Injury
225	Characteristics of Low-Energy Lisfranc Injuries Compared With High-Energy Injuries.
226	Foot Ankle Int. 2017; 38(9):964-969.
227	5. Myerson MS, Cerrato RA. Current management of tarsometatarsal injuries in
228	the athlete. J Bone Joint Surg Am. 2008; 90(11):2522-2533.
229	6. Kösters C, Bockholt S, Müller C, Winter C, Rosenbaum D, Raschke MJ, et al.
230	Comparing the outcomes between Chopart, Lisfranc and multiple metatarsal shaft
231	fractures. Arch Orthop Trauma Surg. 2014; 134(10):1397-1404.
232	7. Sherief TI, Mucci B, Greiss M. Lisfranc injury: how frequently does it get
233	missed? And how can we improve? Injury. 2007; 38(7):856-860.
234	8. Sripanich Y, Weinberg MW, Krähenbühl N, Rungprai C, Saltzman CL, Barg A.
235	Reliability of measurements assessing the Lisfranc joint using weightbearing computed
236	tomography imaging. Arch Orthop Trauma Surg. 2020.
237	9. Rankine JJ, Nicholas CM, Wells G, Barron DA. The diagnostic accuracy of
	14

- 238 radiographs in Lisfranc injury and the potential value of a craniocaudal projection. AJR
- 239 Am J Roentgenol. 2012; 198(4):W365-369.
- 240 10. Siddiqui NA, Galizia MS, Almusa E, Omar IM. Evaluation of the
- tarsometatarsal joint using conventional radiography, CT, and MR imaging.
- 242 Radiographics. 2014; 34(2):514-531.
- 243 11. Sripanich Y, Weinberg MW, Krähenbühl N, Rungprai C, Mills MK, Saltzman
- 244 CL, et al. Imaging in Lisfranc injury: a systematic literature review. Skeletal Radiol.
- 245 2020; 49(1):31-53.
- 246 12. Ponkilainen VT, Partio N, Salonen EE, Riuttanen A, Luoma EL, Kask G, et al.
- 247 Inter- and intraobserver reliability of non-weight-bearing foot radiographs compared
- 248 with CT in Lisfranc injuries. Arch Orthop Trauma Surg. 2020.
- 249 13. Sands AK, Grose A. Lisfranc injuries. Injury. 2004; 35 Suppl 2:SB71-76.
- 250 14. Wynter S, Grigg C. Lisfranc injuries. Aust Fam Physician. 2017; 46(3):116-
- 251 119.
- 252 15. Seo DK, Lee HS, Lee KW, Lee SK, Kim SB. Nonweightbearing Radiographs
- in Patients With a Subtle Lisfranc Injury. Foot Ankle Int. 2017; 38(10):1120-1125.
- 254 16. Aronow MS. Treatment of the missed Lisfranc injury. Foot Ankle Clin. 2006;
- 255 11(1):127-142, ix.

- 256 17. Faciszewski T, Burks RT, Manaster BJ. Subtle injuries of the Lisfranc joint. J
- 257 Bone Joint Surg Am. 1990; 72(10):1519-1522.
- 258 18. Haraguchi N, Ota K, Ozeki T, Nishizaka S. Anatomical Pathology of Subtle
- 259 Lisfranc Injury. Sci Rep. 2019; 9(1):14831.
- 260 19. Thomas JL, Kopiec A, Mark K, Chandler LM. Radiographic Value of the
- 261 Lisfranc Diastasis in a Standardized Population. Foot Ankle Spec.
- 262 2019:1938640019890738.
- 263 20. Abdelaziz ME, Hagemeijer N, Guss D, El-Hawary A, El-Mowafi H,
- 264 DiGiovanni CW. Evaluation of Syndesmosis Reduction on CT Scan. Foot Ankle Int.
- 265 2019; 40(9):1087-1093.
- 266 21. Potter HG, Deland JT, Gusmer PB, Carson E, Warren RF. Magnetic resonance
- imaging of the Lisfranc ligament of the foot. Foot Ankle Int. 1998; 19(7):438-446.
- 268 22. Benirschke SK, Meinberg E, Anderson SA, Jones CB, Cole PA. Fractures and
- dislocations of the midfoot: Lisfranc and Chopart injuries. J Bone Joint Surg Am. 2012;
- 270 94(14):1325-1337.
- 271 23. Panchbhavi VK, Andersen CR, Vallurupalli S, Yang J. A minimally disruptive
- 272 model and three-dimensional evaluation of Lisfranc joint diastasis. J Bone Joint Surg
- 273 Am. 2008; 90(12):2707-2713.

274	24.	Knijnenberg LM, Dingemans SA, Terra MP, Struijs PAA, Schep NWL,
275	Scheper	rs T. Radiographic Anatomy of the Pediatric Lisfranc Joint. J Pediatr Orthop.
276	2018; 3	8(10):510-513.
277	25.	Eliasziw M, Young SL, Woodbury MG, Fryday-Field K. Statistical
278	method	ology for the concurrent assessment of interrater and intrarater reliability: using
279	goniom	etric measurements as an example. Phys Ther. 1994; 74(8):777-788.
280	26.	Hartmann DP. Considerations in the choice of interobserver reliability
281	estimate	es. J Appl Behav Anal. 1977; 10(1):103-116.

283 Tables

284

	Characteristic	n=18
	Sex (male), n (%)	8 (44%)
-	Age (yr), mean (SD)	25.8 (10.7)
-	Affected side (right), n (%)	8 (44%)
	Height (cm), mean (SD)	165.3 (9.4)
	Weight (kg), mean (SD)	64.3 (14.5)
	BMI (kg/m ²), mean (SD)	23.3 (3.8)
	Nunley and Vertullo classification, n (%)	
	Stage I	10 (56%)
	Stage II	8 (44%)
	Stage III	0 (0%)
	Stage IV	0 (0%)

285 **Table 1 Patient characteristics**

286 SD, standard deviation; BMI, body mass index

287 Table 2 Diastasis measurements by the first observer according to method

288	;
-----	---

	Observer 1		
Mathad	Affected side	Unaffected side	
Method	(n=18)	(n=18)	P value
Diastasis between parallel lines (mm)	5.8 (1.5)	3.6 (1.0)	< .001
Distal-point diastasis (mm)	6.7 (1.7)	4.4 (0.8)	< .001
Middle-point diastasis (mm)	6.3 (1.4)	4.0 (0.9)	<.001
Proximal-point diastasis (mm)	5.8 (1.3)	3.8 (0.9)	< .001

289 All values are presented as means (standard deviation).

Table 3 Intra- and interobserver reliabilities for all diastasis measurement methods

among all four observers

	Intraobserver reliability		Interobserver reliability	
M.4 1	Unaffected	Affected	Unaffected	Affected
Method	side	side	side	side
Diastasis between parallel lines	0.93	0.89	0.81	0.88
Distal-point diastasis	0.88	0.92	0.89	0.86
Middle-point diastasis	0.93	0.90	0.91	0.88
Proximal-point diastasis	0.92	0.87	0.89	0.84

295 Figure legends

297	Fig. 1 The four methods used to measure diastasis between the medial cuneiform and
298	the base of the second metatarsal on weightbearing radiographs: I) diastasis between
299	parallel lines, II) distal-point diastasis, III) middle-point diastasis, and IV) proximal-
300	point diastasis.
301	
302	Fig. 2 Radiograph showing the double floor appearance. When the medial cuneiform
303	and/or second metatarsal had a double floor on weightbearing radiographs, we measured
304	the longest distance between the two.
305	
306	Fig. 3 Radiographs showing methods of diastasis measurement used in previous
307	studies. (A) Alignment of the tarsometatarsal joint along the medial border of the
308	second metatarsal and middle cuneiforms. (B) Distance between the proximal parts of
309	the first and second metatarsals. (C) Distance between the medial and middle
310	cuneiforms.

311 Fig. 1

Fig. 2

317 Fig. 3

