1	Induction of potassium channel regulator KCNE4 in a submandibular lymph node
2	metastasis model
3	
4	Ryosuke Mano ^{1)2)*} , Tomoko Tanaka ^{2)*} , Shiho Hashiguchi ¹⁾²⁾ , Hiroyuki Takahashi ³⁾ ,
5	Naoaki Sakata ^{2)**} , Seiji Kondo ¹⁾ , Shohta Kodama ^{2)**}
6	
7	¹⁾ Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka
8	University, Japan
9	²⁾ Department of Regenerative Medicine and Transplantation, Faculty of Medicine,
10	Fukuoka University, Japan
11	³⁾ Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University,
12	Japan
13	
14	*RM & TT contributed equally to this work.
15	
16	**Corresponding authors:
17	Naoaki Sakata: Nanakuma 7-45-1, Jonan-ku, Fukuoka, Japan. Telephone: 81-92-801-
18	1011 ex3632; Fax: 81-92-801-1019; Email: <u>naoakisakata@fukuoka-u.ac.jp</u>
19	Shohta Kodama: Nanakuma 7-45-1, Jonan-ku, Fukuoka, Japan. Telephone: 81-92-801-
20	1011 ex3630; Fax: 81-92-801-1019; Email: <u>skodama@fukuoka-u.ac.jp</u>
21	

Scientific reports (2022, 12:13208) [DOI: 10.1038/s41598-022-15926-9]

22 Abstract

23 Cancer cells often metastasize to the lymph nodes (LNs) before disseminating 24 throughout the body. Clinically, LN metastasis correlates with poor prognosis and 25 influences treatment options. Many studies have shown that cancer cells communicate 26 with immune and stromal cells to prepare a suitable niche for metastasis. In this study, 27 mice were injected with B16-F10 murine melanoma cells to generate a tongue 28 submandibular lymph node (SLN) metastasis model in which genes of interest could be 29 investigated. Microarray analyses were performed on SLNs, identifying 162 30 upregulated genes, some of which are known metastasis genes. Among these 31 upregulated genes, *Kcne4*, *Slc7a11*, *Fscn1*, and *Gadd45b* were not associated with 32 metastasis, and increased expression of *Kcne4* and *Slc7a11* was confirmed by real-time 33 PCR and immunohistochemistry. The roles of KCNE4 in chemokine production and 34 cell adhesion were examined using primary lymphatic endothelial cells, and 35 demonstrated that Ccl17 and Ccl19, which are involved in melanoma metastasis, were upregulated by KCNE4, as well as *Mmp3* matrix metalloproteinase. Expression of 36 37 KCNE4 was detected in human LNs with metastatic melanoma. In conclusion, we 38 found that LN metastatic melanoma induces KCNE4 expression in the endothelium of 39 LNs.

40 Introduction

41	Cancer cells, including melanoma cells, often metastasize through the
42	lymphatic system to the regional lymph nodes (LNs) before spreading throughout the
43	body via the bloodstream ¹⁻⁶ . The presence of LN metastasis in cancer patients is
44	correlated with poor prognosis and is often a factor in determining treatment strategies ⁷⁻
45	¹⁰ . Therefore, to understand the mechanisms of LN metastasis, many animal models and
46	clinical studies have been conducted. It has been reported that cancer cells communicate
47	with immune cells and stromal cells locally and at metastatic sites, remodeling an
48	environment that supports metastasis even before the tumor reaches secondary
49	organs ^{11,12} . To prepare pre-metastasis niches, cancer cells use several factors, including
50	cytokines, chemokines, extracellular matrix, microRNA, exosomes, and small
51	extracellular vesicles ¹³⁻¹⁶ . The mechanism by which melanoma metastasizes to LNs has
52	been reported to cause changes in sentinel LNs, such as increased lymphangiogenesis ¹⁷
53	and induction of an immunosuppressive environment ¹⁸ .
54	According to previous clinical and animal model studies, the dissemination of
55	cancer cells from the primary tumor to distant sites often occurs earlier than the
56	diagnosis of the primary tumor ¹⁹⁻²⁴ . Understanding the changes in the LNs before
57	metastatic dissemination is critical for deciphering the first steps in the spread of tumor

58	metastasis and for developing a therapeutic approach to prevent LN metastasis ²⁵ . In this
59	study, we established a metastasis model in which melanoma cells metastasize from the
60	mouse tongue to the submandibular lymph nodes (SLNs) and analyzed early changes in
61	gene expression in the SLNs.

Results

64	Development of a tongue SLN metastasis model
65	To develop a tongue SLN metastasis model, we transplanted mice with B16-F10 ²⁶ , a
66	LN metastatic murine melanoma cell line, into the right side of the tongue
67	(Supplementary Fig. S1A). The tumor size increased in accordance with the number of
68	transplanted cells and with time after transplantation (Supplementary Fig. S1B, C). The
69	rates of metastasis to SLNs on days 3, 7, 10, and 14 of mice injected with 1×10^5 B16-
70	F10 were 10%, 10%, 50%, and 100%, respectively (Supplementary Fig. S1D). In
71	addition, metastasis to the lung was detected in 2 of 10 mice on day 14. Giemsa staining
72	of SLNs on days 14 and 20 revealed melanoma melanin pigment (Supplementary Fig.
73	S1E). These data showed that our tongue SLN metastatic model exhibited definite SLN
74	metastasis by day 14 following injection with 1×10^5 B16-F10 cells.
75	
76	Changes in gene expression levels in the early stage of SLN metastasis
77	Next, to investigate gene expression changes of SLNs in the early stage of metastasis,
78	we performed a microarray analysis. Eight mice were injected with B16-F10 and three
79	with PBS into the right side of the tongue. Three days after the injection, gross
80	observation revealed swelling of the right SLNs, and melanin pigmentation was

81	observed in two (#4 and 7) of eight mice (Fig. 1A, 1B). The right SLNs were stained
82	with Giemsa, and black melanoma cells were detected in the subcapsular sinus of #4,
83	but not in the control or #1, 3, and 8 (Fig. 1C). To rule out SLNs in which B16-F10 had
84	spread, the expression of a melanoma marker, Mlana, which encodes Melan A, was
85	analyzed by quantitative RT-PCR (qRT-PCR), and the right SLNs of #1, 3, and 8 were
86	selected for microarray analysis (Fig. 1D). SLNs from mice injected with PBS were
87	used as controls.
88	In the results of the microarray analyses, there were 162 upregulated and 161
89	downregulated genes (B16-F10 vs control, fold change of <-2 and >2, respectively; p <
90	0.05). According to the annotation analyses, the upregulated genes were classified into
91	the categories of T-cell receptor signaling pathway, RNA transport, and measles by
92	annotation analysis, and the downregulated genes were classified as neuroactive ligand-
93	receptor interactions (Fig.2A). As expected, the upregulated genes included genes such
94	as Ccl19 that have been reported to be associated with metastasis (Fig. 2B). Among the
95	upregulated genes, we focused on potassium voltage-gated channel, lsk-related
96	subfamily, gene 4 (<i>Kcne4</i>), solute carrier family 7 (cationic amino acid transporter, γ +
97	system), member 11 (<i>Slc7a11</i>) ^{27,28} , fascin actin-bundling protein 1 (<i>Fscn1</i>) ²⁹⁻³¹ , and
98	growth arrest and DNA-damage-inducible 45 beta $(Gadd45b)^{32}$, whose roles in LNs and

99	metastasis are unknown. To validate the upregulation of these genes, we performed
100	qRT-PCR, and compared their expression levels among control SLNs, right-hand SLNs
101	without metastasis, right-hand SLNs with metastasis, and left-hand SLNs. The
102	expression levels of Kcne4, Slc7a11, and Ccl19 in the right-hand SLNs with or without
103	metastasis were increased compared with the control SLNs and the left-hand SLNs (Fig.
104	2C). The expression levels of Kcne4, Slc7a11, and Ccl19 in the right SLNs did not
105	change depending on the presence or absence of metastasis (Fig. 2C).
106	To clarify whether the expression of Kcne4, Slc7a11, Fscn1, Gadd45b and Ccl19
107	were induced by B16-F10-secreted factors, we analyzed changes in gene expression in
108	LECs by qRT-PCR after co-culture in transwell plates. Kcne4, Slc7a11 and Gadd45b
109	were unchanged by co-culture with B16-F10, Fscn1 was significantly induced, and
110	Ccl19 was undetectable in primary cultured LECs (Fig. 2D).
111	Next, immunostaining was performed to determine which cells in the SLNs
112	expressed the targets of interest. The expression levels of KCNE4, SLC7A11, and
113	CCL19 were increased in the SLNs of B16-F10-transplanted mice compared with the
114	controls (Fig. 3A–D, Supplementary Fig. S2A, B, G, and H). The KCNE4-positive
115	ratios in the CD45-positive and podoplanin-positive areas of the SLNs of F10-
116	transplanted mice were 15.2% and 62.1%, respectively (Fig. 3A, B). KCNE4 was also

117	observed around PNAd-positive cells, a marker of high endothelial venules. (Fig. 3C).
118	Most SLC7A11-positive cells were podoplanin-positive, whereas FSCN1-positive cells
119	were negative for both podoplanin and CD45 (Supplementary Fig. S2C, D). GADD45B
120	was observed in podoplanin-positive cells (Supplementary Fig. S2E, F). Consistent with
121	previous reports, CCL19-expressing cells were podoplanin-positive (Supplementary
122	Fig. S2G, H).
123	In addition to the mouse melanoma cell line, MOC2 ³³ oral squamous cell
124	carcinoma cells were modified to stably express turboGFP (MOC2-tGFP) and were
125	transplanted into the tongue (Supplementary Fig. S3A). Seven days after
126	transplantation, GFP fluorescence was detectable in the tongue but not in SLNs by
127	stereomicroscopy (Supplementary Fig. S3B). The expression of tGFP in SLNs was
128	detected by qRT-PCR (Supplementary Fig. S3C). Kcne4 expression was detected in the
129	right-hand SLNs of mice implanted with MOC2-tGFP (Supplementary Fig. S3D).
130	Kcne4 expression in B16-F10 and MOC2 cells was approximately one-thousandth of
131	that in normal SLNs (Supplementary Fig. S3E).
132	
133	KCNE4 regulates the expression of chemokines and cell adhesion factors in
134	primary cultured LECs

135	We found that KCNE4 was induced in the SLNs of mice transplanted with
136	B16-F10 and MOC2. KCNE4 is an inhibitory beta subunit of potassium voltage-gated
137	channel subfamily Q member 1 (KCNQ1) ³⁴⁻³⁷ . KCNQ1 and KCNE4 are highly
138	expressed in the heart ^{38,39} , but their roles in lymphatic endothelium are unclear. Because
139	the mouse KCNQ family consists of KCNQ1, KCNQ2, KCNQ3, KCNQ4, and KCNQ5,
140	we examined their expression levels by qRT-PCR and found that Kcnq1 was
141	dominantly expressed in LECs. (Fig. 4A). The mRNA expression of Kcnal and Kcna3,
142	which also bind to KCNE4 ^{40,41} , were detected whereas the expression levels of <i>Kcna1</i>
143	and Kcna3 were lower than Kcnq1 (Fig. 4A). Among the KCNE family, Kcne1, Kcne2,
144	Kcne3, and Kcne4 were detected by qRT-PCR. (Fig. 4A). We examined whether
145	KCNE4 was co-localized with KCNQ1 in SLNs. Immunostaining of SLNs of B16-F10
146	metastatic mice demonstrated that KCNQ1 was expressed in podoplanin-positive cells,
147	but not in CD45-positive cells (Fig. 4B and 4C). In addition, KCNQ1 was detected in
148	KCNE4-positive cells (Fig. 4D).
149	Next, to investigate the roles of KCNE4 in lymphatic endothelium, Kcne4 was
150	suppressed by siRNA. In Kcne4-knocked down LECs, the expression of C-Cmotif
151	chemokine ligand17 and 19 (Ccl17 and Ccl19), which are involved in melanoma
152	metastasis, was decreased. Conversely, overexpression of KCNE4 increased the

153	expression of Ccl17 and Ccl19, especially Ccl17 (Fig. 5A and 5B). The adhesion factor
154	fibronectin 1 ($Fn1$) was increased by knockdown of $Kcne4$ and decreased by its
155	overexpression (Fig. 5A and 5B). Regarding the metalloproteases, matrix
156	metalloproteinases -2, -3, and -14 (Mmp2, Mmp3, and Mmp14, respectively) were
157	decreased by Kcne4 knockdown, and overexpression of KCNE4 decreased Mmp2 but
158	markedly increased Mmp3 (Fig. 5A and 5B).
159	
160	Expression of KCNE4 in clinical specimens of melanoma lymph node metastasis
161	Immunostaining was performed to determine whether KCNE4, which was
162	upregulated in the mouse melanoma metastasis model, was also expressed in human
163	lymph node tissues to which melanoma had metastasized. As shown in Figure 6,
164	KCNE4 was detected in human LNs with metastasis, and the podoplanin-positive areas
165	were KCNE4-positive.

166 Discussion

167	We have developed a model in which cancer cells metastasize from the tongue
168	to SLNs with high probability within a short period of time. We analyzed the gene
169	expression changes in SLNs and found that Kcne4 and Slc7a11 were induced in
170	lymphatic endothelium in the early stages of metastasis before cancer cells had
171	metastasized.
172	The mouse B16 melanoma cell line is the most widely used tumor model and
173	has been used to elucidate metastatic mechanisms as well as in the development of
174	anticancer drugs. Genetically engineered models of melanoma development and
175	metastasis have also been reported, including tyrosinase-specific Braf p.V600E/Pten
176	knockout mice, which is a model of developing malignant melanoma in which
177	antioxidant administration promotes LN metastasis ^{42,43} . Our model involves simple
178	B16-F10 implantation in the tongue, which results in early and high rates of metastasis
179	to SLNs. Because B16 is derived from cutaneous melanoma, this is not an orthotopic
180	transplantation, but it is useful for studying tumor immunity related to LN metastasis
181	because it is implanted into C57BL/6 mice in a syngeneic manner. We transplanted a
182	mouse oral squamous cell carcinoma cell line, MOC2, into the tongue and confirmed
183	metastasis to the SLNs as well as B16-F10.

184	To analyze the changes that occur in LNs before cancer cell metastasis, we
185	analyzed the gene expression changes of SLNs in the early stages of metastasis in our
186	model and found that Kcne4 and Slc7a11 were increased. In in vitro transwell cultures,
187	co-culture with B16-F10 did not affect the expression of <i>Kcne4</i> and <i>Slc7a11</i> , suggesting
188	that this was not a direct effect of the secreted factors of B16-F10. KCNE4 is a
189	regulatory subunit of KCNQ1 and suppresses the KCNQ1 current in Xenopus oocytes
190	and mouse cardiomyocytes ^{34,36} Human KCNE4 gene mutations are associated with a
191	variety of pathologies, especially cardiac arrhythmias ^{39,44} . In studies of <i>Kcne4</i> -deficient
192	mice, KCNE4 expression in ventricles was higher in males than in females, and was
193	regulated by androgens ⁴⁵ . In addition, KNCE4 is expressed in vascular smooth muscle
194	⁴⁶ , but its function in lymphatic endothelium has not been reported. We found that
195	KCNE4 was induced in podoplanin-positive cells in SLNs of B16-F10 transplanted
196	mice. In primary cultured LECs, inhibition of KCNE4 decreased Ccl17 and Mmp3 and
197	increased Fn1. Conversely, overexpression of KCNE4 increased Ccl17 and Mmp3 and
198	decreased <i>Fn1</i> , suggesting that KCNE4 promotes metastasis by increasing metastasis-
199	associated cytokine production and lymphatic endothelial permeability. CCL17 is a
200	ligand for CCR4, which activates CCR4-expressing Th2 cells and regulatory T-cells
201	(Tregs) and suppresses effector cells; KCNE4 may contribute to tumor cell survival

202	through activation of Tregs via increasing CCL17 production. MMP-3 (also known as
203	stromelysin-1) has been reported to enhance the migratory and invasive abilities of
204	tumor cells. The role of MMPs in cancers has been well elucidated, and they can
205	remarkably promote the malignancy of tumor cells by degrading the extracellular
206	matrix, facilitating angiogenesis, and promoting tumor invasion and metastasis ⁴⁷ .
207	In leukocytes, KCNE4 has an important role in regulating KCNA3 (Kv1.3) to
208	act as an inhibitor of cell proliferation, activation, apo-regulation, autoimmune diseases,
209	and T cell proliferation and activation ^{40,41} . We showed that <i>Kcna3</i> expression was low
210	in LECs and KCNE4 was induced in podoplanin-positive lymphatic endothelium in the
211	early stages of metastasis. Although it is unclear how melanoma induces KCNE4 in
212	lymphatic vessel endothelium, KCNE4 co-localized with KCNQ1 in LNs, suggesting
213	that KCNE4 regulates KCNQ1 in lymphatic endothelium. Whether KCNQ1 expression
214	has a functional role in the metastatic process remains unknown and will require further
215	analysis.
216	SLC7A11, also known as xCT, is an amino acid exchanger that exports
217	intracellular glutamate and imports cystine into the cell ²⁷ . Cystine imported by xCT
218	becomes a source of glutathione, which acts to remove reactive oxygen species ⁴⁸ ,

221	We demonstrated that KCNE4 expression is also present in podoplanin-
222	positive cells in human melanoma metastatic LNs. In the last decade, immune
223	checkpoint inhibitors have been shown to be effective against malignant melanoma ⁴⁹ ,
224	but they are less effective against mucosal melanoma than cutaneous melanoma ⁵⁰ . The
225	nasal cavity is the most common site of occurrence of malignant melanoma of the head
226	and neck, followed by the oral cavity. However, the incidence of LN metastasis is
227	significantly higher in the oral cavity (25%) than in the nasal cavity $(5.7\%)^{51}$. In the oral
228	and maxillofacial region, cervical LN metastasis is present in 25% of patients at the
229	time of initial diagnosis and in 42% of patients throughout the course of the disease, and
230	is associated with poor prognosis ⁵² .
231	In conclusion, we established a model of tongue-submandibular LN metastasis
232	and found that KCNE4 is increased in the LNs prior to metastasis. Further physiological
233	studies are needed to analyze the role of KCNQ1-KCNE4 in lymphatic endothelium.
234	To clarify the role of KCNE4 in metastasis, it will be necessary to transplant cancer
235	cells into mice with LEC-specific deletion of <i>Kcne4</i> in the future.
236	

237 Methods

238 Cell culture

239 C57BL/6 mouse skin melanoma cell line B16-F10 (CRL6475; ATCC, Manassas, VA)

240 ^{26,53} were cultured at 37°C in a 5% CO₂ incubator in DMEM (D5796; Sigma–Aldrich,

241 St Louis, MO) supplemented with 10% fetal bovine serum (FBS) (Cytiva, Tokyo,

242 Japan). The cells were used up to six passages in the experiments. C57BL/6 mouse-

243 derived primary cultured LECs (Cell Biologics, Chicago, IL) were cultured in 0.1%

gelatin-coated culture dishes at 37°C with 5% CO₂ in EGM2-endothelial cell growth

245 medium-2 (Lonza, Basel, Switzerland), and used in *in vitro* experiments up to six

246 passages⁵⁴. For transwell culture, 5×10^4 LECs were seeded into 24-well plates and

247 incubated overnight. Transwell plates with 0.4-µm pore size (Corning, Corning, NY)

248 were seeded with 1×10^5 B16-F10 and co-cultured for 24 h. MOC2 mouse oral

squamous cell carcinoma cell line was obtained from Kerafast (Boston, MA)³³. Culture

250 medium for MOC2 was a mixture of IMDM (Nacalai Tesque, Kyoto, Japan) and Ham's

251 F12 (Nacalai Tesque) at a 2:1 ratio, supplemented with 5% FBS (Cytiva), 5 mg/L

252 insulin (Sigma–Aldrich), 40 µg/L hydrocortisone (Sigma–Aldrich), and 5 µg/L EGF

253 (R&D Systems, Minneapolis, MN). For stable expression of turboGFP, MOC2 were

254 infected with GIPZ non-silencing lentiviral shRNA control (Horizon Discovery,

255 Cambridge, UK) and cultured in medium containing 2 µg/mL puromycin (Sigma-

Aldrich).

257

258 Transplantation of melanoma cells into the tongue

All animal experiments were performed in compliance with the relevant laws and

260 institutional guidelines and were approved by the Animal Care and Use Committee of

262 guidelines. Eight-week-old male C57BL/6 mice were purchased from Kyudo (Tosu, 263 Japan). Mice were kept under specific pathogen-free conditions and used at 9 weeks of 264 age. B16-F10 or MOC2-tGFP cells were removed from the culture dish by trypsin treatment, and 1×10^4 , 1×10^5 , or 5×10^5 cells were suspended in 50 µL PBS and 265 injected into the right side of the tongue under anesthesia using 2% isoflurane. After 266 267 transplantation, body weight was measured, and the tongue was observed 268 macroscopically every 3 days. Mice that had lost more than 10% of their body weight in 269 1 week were killed with an overdose of isoflurane. 270 271 **Quantitative RT-PCR** 272 Total RNA was prepared using a Purelink RNA Purification Kit (Thermo Fisher 273 Scientific, Waltham, MA). Quantitative real-time PCR (qPCR) was performed using 274 One-step TB Green Premix plus ExTaq II (Takarabio, Otsu, Japan) and a LightCycler96 275 (Roche Diagnostics, Basel, Switzerland). Primers used for qPCR are listed in Table S1. 276 Actb was used as internal control, and expression levels were normalized to Actb. 277 278 **Microarray analysis** A total of 1×10^5 of B16-F10 cells were transplanted into eight mice, and PBS was 279 280 injected into three control mice. At 3 days after transplantation, LNs were removed and 281 divided into two sections: one for qPCR, and the other for tissue staining. LNs with low 282 expression levels of *Mlana* were used for microarray analysis. Sample labeling and 283 array hybridization were performed on a Clariom D Assay, Mouse GE Microarray $8 \times$ 284 60K v2 (Thermo Fisher Scientific). After quantile normalization, lncRNA was removed.

Fukuoka University (approval number: 1810067), and in accordance with the ARRIVE

261

285 Present probes were extracted and a Z score with a ratio was calculated. Enrichment

analysis was performed by GeneTrail2 (https://genetrail2.bioinf.uni-sb.de/) and a

287 volcano plot was created by Transcriptome Analysis Console software (TAC) (Thermo

288 Fisher Scientific).

289

290 Histological analyses

291 Mice were killed at each time point after cell transplantation, and the tongue and SLNs

 $\label{eq:292} \mbox{ were removed, fixed in formalin, embedded in paraffin, and sliced to 4-μm thickness.}$

293 Tissue sections were deparaffinized and stained with hematoxylin–eosin. Human lymph

294 node tissue sections were obtained from US Biomax (Derwood, MD). Metastatic

295 malignant melanoma tissue array (BCC38218) was used to stain melanoma metastatic

296 LNs. Lymph node tissue array (LY481) was used for staining of control LNs.

297 Immunohistochemistry was performed as described previously⁵⁴. Primary antibodies

used for immunohistochemistry are listed in Table S2. Secondary antibodies were Alexa

299 Fluor 488-conjugated AffiniPure donkey anti-rabbit IgG, Alexa Fluor 594-conjugated

300 AffiniPure goat anti-Syrian hamster IgG, Alexa Fluor 594-conjugated AffiniPure

301 donkey anti-goat IgG, and Alexa Fluor 594-conjugated AffiniPure donkey anti-mouse

302 IgG (all from Jackson ImmunoRessearch, West Grove, PA). Images were acquired

303 using a fluorescence microscope (BZ-710; Keyence, Osaka, Japan) and a confocal

304 microscope (LSM710; Carl Zeiss, Oberkochen, Germany). Image analysis was

305 performed using Image J (https://imagej.nih.gov/ij/).

306

307 Suppression and overexpression of KCNE4 in LECs

310	against Kcne4 (Table S3) using Lipofectamine RNAiMAX (Thermo Fisher Science).
311	Mouse Kcne4 cDNA was cloned by PCR and inserted into pcDNA3.1 plasmid.
312	pcDNA3.1-KCNE4 plasmid was transfected into LECs using Fugene HD (Promega,
313	Madison, WI). Transfection was performed in accordance with the manufacturer's
314	instructions.

A total of 1.5×10^5 LECs were transfected with 25 pmol non-targeting siRNA

(MISSION siRNA universal control#1, MERCK, Darmstadt, Germany) or siRNA

315

308

309

316 Statistical analysis

317 Statistical analysis was performed using GraphPad Prism software ver.8 and 9. All data

318 are expressed as the mean \pm standard error. Comparative analysis was performed by

319 Student's t-test or one-way analysis of variance (ANOVA). For multiple comparisons,

320 we performed Bonferroni or Sidak analysis. The statistical significance was set at p < p

- **321** 0.05.
- 322

323 References

324	1	Sleeman, J., Schmid, A. & Thiele, W. Tumor lymphatics. Semin Cancer Biol 19, 285-297,
325		doi:10.1016/j.semcancer.2009.05.005 (2009).
326	2	Leong, S. P. et al. Cutaneous melanoma: a model to study cancer metastasis. J Surg Oncol 103,
327		538-549, doi:10.1002/jso.21816 (2011).
328	3	Alitalo, A. & Detmar, M. Interaction of tumor cells and lymphatic vessels in cancer progression.
329		Oncogene 31 , 4499-4508, doi:10.1038/onc.2011.602 (2012).
330	4	Shain, A. H. & Bastian, B. C. From melanocytes to melanomas. Nat Rev Cancer 16, 345-358,
331		doi:10.1038/nrc.2016.37 (2016).
332	5	Brown, M. et al. Lymph node blood vessels provide exit routes for metastatic tumor cell
333		dissemination in mice. Science 359, 1408-1411, doi:10.1126/science.aal3662 (2018).
334	6	Pereira, E. R. et al. Lymph node metastases can invade local blood vessels, exit the node, and
335		colonize distant organs in mice. Science 359, 1403-1407, doi:10.1126/science.aal3622 (2018).
336	7	Jatoi, I., Hilsenbeck, S. G., Clark, G. M. & Osborne, C. K. Significance of axillary lymph node
337		metastasis in primary breast cancer. J Clin Oncol 17, 2334-2340,
338		doi:10.1200/JCO.1999.17.8.2334 (1999).
339	8	Starz, H., Balda, B. R., Kramer, K. U., Buchels, H. & Wang, H. A micromorphometry-based
340		concept for routine classification of sentinel lymph node metastases and its clinical relevance
341		for patients with melanoma. Cancer 91, 2110-2121 (2001).
342	9	Kawada, K. & Taketo, M. M. Significance and mechanism of lymph node metastasis in cancer
343		progression. Cancer Res 71, 1214-1218, doi:10.1158/0008-5472.CAN-10-3277 (2011).
344	10	Ferris, R. L., Lotze, M. T., Leong, S. P., Hoon, D. S. & Morton, D. L. Lymphatics, lymph nodes and
345		the immune system: barriers and gateways for cancer spread. Clin Exp Metastasis 29, 729-736,
346		doi:10.1007/s10585-012-9520-2 (2012).
347	11	Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer
348		17 , 302-317, doi:10.1038/nrc.2017.6 (2017).
349	12	Celia-Terrassa, T. & Kang, Y. Metastatic niche functions and therapeutic opportunities. Nat Cell
350		<i>Biol</i> 20 , 868-877, doi:10.1038/s41556-018-0145-9 (2018).
351	13	Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-
352		metastatic phenotype through MET. Nature medicine 18, 883-891, doi:10.1038/nm.2753
353		(2012).
354	14	Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis.
355		Nature medicine 19 , 1423-1437, doi:10.1038/nm.3394 (2013).
356	15	Aleckovic, M. & Kang, Y. Regulation of cancer metastasis by cell-free miRNAs. Biochim Biophys
357		Acta 1855, 24-42, doi:10.1016/j.bbcan.2014.10.005 (2015).

358	16	Garcia-Silva, S. et al. Melanoma-derived small extracellular vesicles induce lymphangiogenesis
359		and metastasis through an NGFR-dependent mechanism. Nat Cancer 2, 1387-1405,
360		doi:10.1038/s43018-021-00272-y (2021).
361	17	van Akkooi, A. C., Verhoef, C. & Eggermont, A. M. Importance of tumor load in the sentinel
362		node in melanoma: clinical dilemmas. Nat Rev Clin Oncol 7 , 446-454,
363		doi:10.1038/nrclinonc.2010.100 (2010).
364	18	Harrell, M. I., Iritani, B. M. & Ruddell, A. Tumor-induced sentinel lymph node
365		lymphangiogenesis and increased lymph flow precede melanoma metastasis. The American
366		<i>journal of pathology</i> 170 , 774-786, doi:10.2353/ajpath.2007.060761 (2007).
367	19	Eyles, J. et al. Tumor cells disseminate early, but immunosurveillance limits metastatic
368		outgrowth, in a mouse model of melanoma. J Clin Invest 120, 2030-2039, doi:10.1172/JCI42002
369		(2010).
370	20	McCreery, M. Q. et al. Evolution of metastasis revealed by mutational landscapes of chemically
371		induced skin cancers. <i>Nature medicine</i> 21 , 1514-1520, doi:10.1038/nm.3979 (2015).
372	21	Rhim, A. D. et al. EMT and dissemination precede pancreatic tumor formation. Cell 148, 349-
373		361, doi:10.1016/j.cell.2011.11.025 (2012).
374	22	Hosseini, H. et al. Early dissemination seeds metastasis in breast cancer. Nature 540, 552-558,
375		doi:10.1038/nature20785 (2016).
376	23	Husemann, Y. et al. Systemic spread is an early step in breast cancer. Cancer Cell 13, 58-68,
377		doi:10.1016/j.ccr.2007.12.003 (2008).
378	24	Klein, C. A. Cancer progression and the invisible phase of metastatic colonization. Nat Rev
379		Cancer 20, 681-694, doi:10.1038/s41568-020-00300-6 (2020).
380	25	Pastushenko, I. et al. Blood microvessel density, lymphatic microvessel density and lymphatic
381		invasion in predicting melanoma metastases: systematic review and meta-analysis. Br J
382		Dermatol 170, 66-77, doi:10.1111/bjd.12688 (2014).
383	26	Fidler, I. J. Biological behavior of malignant melanoma cells correlated to their survival in vivo.
384		Cancer Res 35 , 218-224 (1975).
385	27	Sato, H., Tamba, M., Ishii, T. & Bannai, S. Cloning and expression of a plasma membrane
386		cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274,
387		11455-11458, doi:10.1074/jbc.274.17.11455 (1999).
388	28	Kaleeba, J. A. & Berger, E. A. Kaposi's sarcoma-associated herpesvirus fusion-entry receptor:
389		cystine transporter xCT. Science 311 , 1921-1924, doi:10.1126/science.1120878 (2006).
390	29	Bryan, J. & Kane, R. E. Actin gelation in sea urchin egg extracts. Methods Cell Biol 25 Pt B, 175-
391		199, doi:10.1016/s0091-679x(08)61425-9 (1982).
392	30	Bryan, J., Edwards, R., Matsudaira, P., Otto, J. & Wulfkuhle, J. Fascin, an echinoid actin-bundling
393		protein, is a homolog of the Drosophila singed gene product. Proc Natl Acad Sci U S A 90, 9115-

394		9119, doi:10.1073/pnas.90.19.9115 (1993).
395	31	Duh, F. M. et al. cDNA cloning and expression of the human homolog of the sea urchin fascin
396		and Drosophila singed genes which encodes an actin-bundling protein. DNA Cell Biol 13, 821-
397		827, doi:10.1089/dna.1994.13.821 (1994).
398	32	Takekawa, M. & Saito, H. A family of stress-inducible GADD45-like proteins mediate activation
399		of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95, 521-530, doi:10.1016/s0092-
400		8674(00)81619-0 (1998).
401	33	Judd, N. P. et al. ERK1/2 regulation of CD44 modulates oral cancer aggressiveness. Cancer Res
402		72 , 365-374, doi:10.1158/0008-5472.CAN-11-1831 (2012).
403	34	Grunnet, M. et al. KCNE4 is an inhibitory subunit to the KCNQ1 channel. J. PhysiolLondon 542,
404		119-130, doi:10.1113/jphysiol.2002.017301 (2002).
405	35	Teng, S. et al. Novel gene hKCNE4 slows the activation of the KCNQ1 channel. Biochem Biophys
406		Res Commun 303 , 808-813, doi:10.1016/s0006-291x(03)00433-9 (2003).
407	36	Grunnet, M., Olesen, S. P., Klaerke, D. A. & Jespersen, T. hKCNE4 inhibits the hKCNQ1 potassium
408		current without affecting the activation kinetics. Biochem Biophys Res Commun 328, 1146-
409		1153, doi:10.1016/j.bbrc.2005.01.071 (2005).
410	37	Manderfield, L. J., Daniels, M. A., Vanoye, C. G. & George, A. L. KCNE4 domains required for
411		inhibition of KCNQ1. J. PhysiolLondon 587, 303-314, doi:10.1113/jphysiol.2008.161281 (2009).
412	38	Sanguinetti, M. C. et al. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks)
413		potassium channel. Nature 384 , 80-83, doi:10.1038/384080a0 (1996).
414	39	Abbott, G. W. KCNE4 and KCNE5: K(+) channel regulation and cardiac arrhythmogenesis. Gene
415		593 , 249-260, doi:10.1016/j.gene.2016.07.069 (2016).
416	40	Sole, L. et al. KCNE4 suppresses Kv1.3 currents by modulating trafficking, surface expression and
417		channel gating. <i>J Cell Sci</i> 122 , 3738-3748, doi:10.1242/jcs.056689 (2009).
418	41	Sole, L. et al. The C-terminal domain of Kv1.3 regulates functional interactions with the KCNE4
419		subunit. <i>J Cell Sci</i> 129 , 4265-4277, doi:10.1242/jcs.191650 (2016).
420	42	Dankort, D. et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat
421		Genet 41 , 544-552, doi:10.1038/ng.356 (2009).
422	43	Le Gal, K. et al. Antioxidants can increase melanoma metastasis in mice. Sci Transl Med 7,
423		308re308, doi:10.1126/scitranslmed.aad3740 (2015).
424	44	Abbott, G. W. Regulation of human cardiac potassium channels by full-length KCNE3 and KCNE4.
425		<i>Sci Rep</i> 6 , 38412, doi:10.1038/srep38412 (2016).
426	45	Crump, S. M. et al. Kcne4 deletion sex- and age-specifically impairs cardiac repolarization in
427		mice. <i>FASEB J</i> 30 , 360-369, doi:10.1096/fj.15-278754 (2016).
428	46	Abbott, G. W. & Jepps, T. A. Kcne4 Deletion Sex-Dependently Alters Vascular Reactivity. J Vasc
429		<i>Res</i> 53 , 138-148, doi:10.1159/000449060 (2016).

430	47	Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor
431		microenvironment. <i>Cell</i> 141 , 52-67, doi:10.1016/j.cell.2010.03.015 (2010).
432	48	Ishimoto, T. et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT
433		subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 19, 387-400,
434		doi:10.1016/j.ccr.2011.01.038 (2011).
435	49	Schadendorf, D. et al. Melanoma. Lancet 392 , 971-984, doi:10.1016/S0140-6736(18)31559-9
436		(2018).
437	50	Nakamura, Y. et al. Poor Lymphocyte Infiltration to Primary Tumors in Acral Lentiginous
438		Melanoma and Mucosal Melanoma Compared to Cutaneous Melanoma. Front. Oncol. 10, 7,
439		doi:10.3389/fonc.2020.524700 (2020).
440	51	Patel, S. G. et al. Primary mucosal malignant melanoma of the head and neck. Head Neck-J. Sci.
441		Spec. Head Neck 24, 247-257, doi:10.1002/hed.10019 (2002).
442	52	Lopez, F. et al. Update on primary head and neck mucosal melanoma. Head Neck-J. Sci. Spec.
443		<i>Head Neck</i> 38 , 147-155, doi:10.1002/hed.23872 (2016).
444	53	Cillo, C., Dick, J. E., Ling, V. & Hill, R. P. GENERATION OF DRUG-RESISTANT VARIANTS IN
445		METASTATIC B-16 MOUSE MELANOMA CELL-LINES. Cancer Res. 47, 2604-2608 (1987).
446	54	Hashiguchi, S., Tanaka, T., Mano, R., Kondo, S. & Kodama, S. CCN2-induced lymphangiogenesis is
447		mediated by the integrin alphavbeta5-ERK pathway and regulated by DUSP6. Sci Rep 12, 926,
448		doi:10.1038/s41598-022-04988-4 (2022).
449		

451 Figure legends

452 Figure 1. Selection of SLNs before melanoma metastasis for the analysis of early

453 metastasis. (A) Schedule of sample preparation for microarray analysis. (B)

- 454 Macroscopic images of the tongue and SLNs on day 3 after transplantation. Ctrl is a
- 455 mouse injected with PBS and #1-8 are mice injected with B16-F10 into the tongue.
- 456 LNs in which melanoma had metastasized turned black, as indicated by the arrowheads.
- 457 (C) LNs #1, 3, and 8 with no metastasis and #4 with metastasis in macroscopic images
- 458 were stained with Giemsa. Melanin pigment was detected as shown by the arrowhead in
- 459 #4. Bars: 100 μm and 50 μm. (**D**) *Mlana* expression was examined by qRT-PCR in the
- 460 right-hand LNs of mice #1–8 transplanted with B16-F10. Relative expression levels
- 461 were adjusted for *Actb* expression. One-way ANOVA, ***p < 0.001 vs ctrl.
- 462

464 Annotation analysis of genes whose expression had changed (B16-F10 vs control, fold

- 465 change of <-2 and >2, respectively; p < 0.05). (B) Volcano plot of genes with altered
- 466 expression. (C) Verification of *Kcne4*, *Slc7a11*, *Fscn1*, and *Gadd45b* expression by
- 467 qRT-PCR. The expression levels of target genes in SLNs of control mice and SLNs of
- 468 mice implanted with B16-F10 (right and left) were analyzed. One-way ANOVA, *p <

0.05, **p < 0.01, ***p < 0.001. ns; not significant. (**D**) LECs were co-cultured with 469 470 B16-F10 in transwell plates for 24 h, and the expression levels of *Kcne4*, *Slc7a11*, 471 Fscn1 and Gadd45b were analyzed by qRT-PCR. ***p < 0.001. ns; not significant. 472 473 Figure 3. KCNE4 is upregulated by melanoma transplantation and is expressed on 474 podoplanin-positive cells in SLNs. Expression of KCNE4 in SLN of mice transplanted 475 with B16-F10 was examined by immunohistochemistry. Double staining was performed 476 with anti-KCNE4 antibody and anti-CD45 antibody (A), anti-podoplanin antibody (B), 477 and anti-PNAd antibody (C). Lymph nodes from mice injected with PBS were used as 478 controls. Bars: 200 µm and 50 µm. (**D**) The percentages of KCNE4-positive areas in 479 SLNs of ctrl or B16-F10 transplanted mice were measured by ImageJ software and 480 divided by the area of the SLNs. Student's t-test, **p < 0.01. 481 482 Figure 4. Expression of KCNQ1 and KCNE4 in SLNs. (A) Expression of Kcnq 483 family members and *Kcna1* and *Kcna3* in primary cultured LECs were examined by 484 qRT-PCR. The expression of KCNQ1 in SLNs was analyzed by immunostaining. 485 Double staining of KCNQ1 and CD45 (B), Podoplanin (C), and KCNE4 (D) was 486 performed. Bars: 200 μ m and 50 μ m (**B** and **D**), 200 μ m and 10 μ m (**C**).

488	Figure 5. Effects of KCNE4 on the expression of chemokines and adhesion factors
489	in primary cultured LECs. (A) Kcne4 was suppressed by siRNA, and expression
490	levels of Ccl17, Ccl19, Fn1, Mmp2, Mmp3, and Mmp14 were analyzed by qRT-PCR.
491	(B) LECs were transfected with KCNE4 expression plasmid, and expression levels of
492	Ccl17, Ccl19, Fn1, Mmp2, Mmp3, and Mmp14 were analyzed by qRT-PCR. One-way
493	ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001; Student's t-test, *p < 0.05, **p < 0.01,
494	***p < 0.001. ns; not significant.
495	
496	Figure 6. Expression of KCNE4 in human melanoma lymph node metastasis. (A)
496 497	Figure 6. Expression of KCNE4 in human melanoma lymph node metastasis. (A) HE staining of human LNs with melanoma metastasis. (B) Human LNs were examined
496 497 498	Figure 6. Expression of KCNE4 in human melanoma lymph node metastasis. (A) HE staining of human LNs with melanoma metastasis. (B) Human LNs were examined by immunostaining using anti-KCNE4 and anti-podoplanin antibodies. Ctrl C3_03;
496 497 498 499	Figure 6. Expression of KCNE4 in human melanoma lymph node metastasis. (A) HE staining of human LNs with melanoma metastasis. (B) Human LNs were examined by immunostaining using anti-KCNE4 and anti-podoplanin antibodies. Ctrl C3_03; normal LN. meta B9_02, A4_01, C6_01 and B3_01: metastatic malignant melanoma
496 497 498 499 500	Figure 6. Expression of KCNE4 in human melanoma lymph node metastasis. (A) HE staining of human LNs with melanoma metastasis. (B) Human LNs were examined by immunostaining using anti-KCNE4 and anti-podoplanin antibodies. Ctrl C3_03; normal LN. meta B9_02, A4_01, C6_01 and B3_01: metastatic malignant melanoma from the neck, groin, and neck and groin, respectively. Nuclei were stained with DAPI.
496 497 498 499 500 501	Figure 6. Expression of KCNE4 in human melanoma lymph node metastasis. (A) HE staining of human LNs with melanoma metastasis. (B) Human LNs were examined by immunostaining using anti-KCNE4 and anti-podoplanin antibodies. Ctrl C3_03; normal LN. meta B9_02, A4_01, C6_01 and B3_01: metastatic malignant melanoma from the neck, groin, and neck and groin, respectively. Nuclei were stained with DAPI. Bars: 200 μm and 50 μm.
496 497 498 499 500 501 502	Figure 6. Expression of KCNE4 in human melanoma lymph node metastasis. (A) HE staining of human LNs with melanoma metastasis. (B) Human LNs were examined by immunostaining using anti-KCNE4 and anti-podoplanin antibodies. Ctrl C3_03; normal LN. meta B9_02, A4_01, C6_01 and B3_01: metastatic malignant melanoma from the neck, groin, and neck and groin, respectively. Nuclei were stained with DAPI. Bars: 200 μm and 50 μm.

504 Acknowledgements

506	experiments and the histological analysis. We also thank H. Nikki March, PhD, from
507	Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.
508	
509	
510	Author contributions
511	R.M. performed all experiments, analyzed the data, and drafted the manuscript; T.T.
512	conducted experiments and drafted the manuscript; S.H. performed the cell culture
513	experiments; H.T. and N.S. contributed to the development of the cancer metastasis
514	model; Se.K. supported the research funding and contributed to the writing of the paper;
515	Sh.K. supported the research funding and supervised the research. N.S. and Sh.K. are
516	guarantors of this study. All authors read and approved the final version of this
517	manuscript.
518	
519	
520	Competing interests
521	The authors declare no competing interests.
522	
523	
524	Data Availability
525	Microarray data: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE197190
526	

The authors thank Mrs. Yuriko Hamaguchi for her assistance with the animal

505

Figure 1.

Figure 2.

D

Figure 5.

Supplementary Fig. S1

Supplementary Fig. S1. Transplantation of mouse melanoma cell line B16-F10 into the tongue and metastasis to submandibular lymph nodes. (A) Cells were injected into the right side of tongue. (B) Macroscopic image of the tongue on day 7 after transplantation. Mice were injected with 1×10^4 , 1×10^5 and 1×10^6 of B16-F10. (C) Tumor growth in tongue transplanted with 1×10^5 cells was observed at 3, 7, 10 and 14 days. (D) Macro images of SLNs transplanted with B16-F10. The arrowheads indicate the SLNs where melanin pigment was observed. (E) Giemsa-stained image of SLNs. Melanin pigment deposition was detected and metastasized B16-F10 cells are observed in LNs at 14 and 20 days after transplantation. Bars; 1 mm. Supplementary Fig. S2

Supplementary Fig. S2. Expression of SLC7A11, FSCN1, GADD45B and CCL19 in SLN of B16-F10-transplanted mice. Among the genes up-regulated by B16-F10 transplantation, the expression of SLC7A11 (A, B), FSCN1 (C, D), GADD45B (E, F), and CCL19 (G, H) was examined by immunostaining. Double staining was performed for the pan-leukocyte marker CD45 and targets (A, C, E, G); double staining for podoplanin and targets (B, D, F, H). Ctrl is the SLN of mice injected with PBS on the tongue; F10 is the SLN of mice implanted with B16-F10 on the tongue. Bars; 200 µm and 50 µm.

Supplementary Fig. S3

В

Supplementary Fig. S3. Induction of *Kcne4* in SLNs by orthotopic transplantation of oral squamous cell carcinoma. MOC2 is a metastatic oral SCC cell line, were modified to stably express turboGFP (tGFP) and were transplanted into tongue. (A) Experimental schedule of transplantation. (B) Macroscopic image of the tongue and SLN on day 7 after transplantation. Fluorescence of tGFP was detected in the tongue transplanted with MOC2-tGFP. (C) The expression level of *tGFP* mRNA was analyzed by qRT-PCR. *tGFP* mRNA was detected in SLNs 7 days after transplantation and increased on day 11. (D) *Kcne4* mRNA expression was increased in the right lymph node of mice 11 days after transplantation. Expression levels were normalized with *Actb*. (E) *Kcne4* expression levels in B16-F10 and MOC2.