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Abstract

Since the 2000s, deep neural networks have been an active area of research,
and we have succeeded in obtaining high performance by using deep neural
networks.

In order to achieve the performance, it is well known that we need a
sufficient amount of training data. When the amount of the given data is
less or the data is biased, we usually apply data augmentation to them.
The data augmentation often makes up for such weakness of the data and
improves the generalization performance.

In this thesis, we propose a new method of data augmentation, which we
call output augmentation, aiming to improve the generalization performance
without using traditional methods of data augmentation. For some given
training data, the output augmentation generates new data as if they are
outputs from the neural network so that the average of this new data coin-
cides with the training output data. We capture the effectiveness of output
augmentation by demonstrating image classification for the CIFAR-10 and
CIFAR-100. In our experiments, we confirmed that the method of output
augmentation improves the accuracy for test data. From this, we expect
that this output augmentation will become a new superior method of data
augmentation than any others we already have.
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Chapter 1

Introduction

1.1 Background and motivation
Artificial intelligence (AI) is a broad concept including information process-
ing of what humans perceive as intelligent and even the computers themselves
which are equipped with such ability of information processing. Systems or
algorithms to implement the ability into such devices are called machine
learning. Machine learning is a subfield of AI and serves as a system which
mimics the learning mechanisms of human learning. Among a variety of
methods in machine learning, deep learning is still making great progress.
Deep learning is a method of training a statistical model, which mimics the
mechanism of how electrical signals transmitting neurons in the human brain
are processed. The statistical model has a hierarchy consisting of many layers
and is called an (artificial) neural network. Each layer has a lot of neurons,
each behavior of which is controlled by parameters. Therefore the neural
network has a lot of parameters. With this nature, deep learning is done by
a large amount of computations, which we usually leave to computers. The
study of neural networks has a long history which started beginning around
1940 and occured two booms.

The first boom was triggered by a psychologist D. O. Hebb, who re-
searched about information processing and learning mechanisms in the brain.
His research focused on neurons, which build neural networks in the brain.
He proposed a hypothesis that when a signal is transmitted to a neuron,
the signal is transmitted to the next neuron by the neuronal fire. He also
advocated the Hebbian learning rule ([1]). The rule states that when a neu-
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ron fires, the weight associated with the input to the neuron increases, and
the nexus of the neuron and the previous neurons (synaptic transmission
efficiency) is strengthened. Hebb’s research is still the basis of modern un-
derstanding of the brain. Next, W. McCulloch and W. Pitts considered a
logic circuit, where we regard units in the circuit as neurons. The circuit
outputs “1” if the input signal is true and “0” otherwise. This made an ar-
tificial neural network possible to solve the linear separation problem, which
concerns partitioning the input data by a hyperplane ([2]). Next, F. Rosen-
blatt introduced a perceptron, which is a logic circuit consisting of an input
layer and an output layer. Each nexus of units in it is assumed to obey
the Hebbian learning rule. However, the first boom came to an end when
M. Minsky and S. Papert showed that a perceptron consisting of input and
output layers could only solve the linear separation problems for input data
([3]). Although Rosenblatt’s work had shown that neural networks could
solve nonlinear separation problems of data by increasing the number of hid-
den layers, it had not been known how to train the neurons. On the other
hand, researchers had not known how to adjust the parameters in the many
hidden layers.

The second boom was triggered by the invention of the backpropagation
([4]). Usually, a multilayer perceptron processes data from the input layer
towards the output layer. The backpropagation is a learning method that
adjusts the parameters in each layer backwards; it goes from the output layer
to the input layer based on a loss function (error function), which is defined
by using the output of the perceptron. D. E. Rumelhart and L. McClelland
discovered that a huge number of neurons, which are distributed in the human
brain, are connected together, and they form a network. This is the reason
why the multilayer perceptrons came to be called neural networks. With
these two contributions, it became possible to train the neural networks,
which we couldn’t in the first boom; This allowed us to solve several nonlinear
separation problems of data, which had embarrassed us in the first boom.

Y. LeCun introduced convolutional neural networks (CNNs), which mod-
eled the visual cortex of the brain. Some of the hidden layers are called
convolutional layers. CNNs have achieved high performance in the hand-
writing classification ([5]). The classification problem refers to estimating a
correct label associated with each input data. For example, any picture of
a cat has the string “cat” as its label. After we make a model learn using
a training dataset which consists of data with their true labels, we want to
make the model estimate what to be the correct label when a new input data
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is given. In traditional neural networks, features of the data are extracted
in each layer, and they form what is averaged over units in the layer. On
the other hand, each convolutional layer in a CNN has filters, each of which
consists of several parameters. The filters can get what parts of the data
grasp the features. As a result, we recognize that it extracts unique features
effectively.

We had these good equipment, but there were still problems during this
second boom. First, neural networks had not reached a practical level of per-
formance. The neural networks got high performance on data used to train
the networks, but the generalization performance, which is a performance for
test data, was still often low. The second problem was that the computers
had taken a huge amount of time for computation since the performance of
computers (GPUs) was not high enough to make the learning process. Be-
cause of these problems, the second boom was over around 1995, and the
field of AI research had entered a winter period.

Since the 2000s, various models of neural networks have been proposed,
and the performance of computers (GPUs) has been improved. Then we
could make it easier to obtain large amounts of data because of the devel-
opment of cloud systems. Along with this, research has been promoted and
has received interest, and many researchers are still working.

To obtain a model with high generalization performance, we have to keep
both the loss function for training data and that for test data decreasing
during the training process. In many cases, the loss function for the training
data gets down during the training process but may not for the test data.
This is called overtraining or overfitting. For the reason of overtraining,
the amount and quality of the training data are not sufficient to make the
model obtain high performance on the test data. This is where the method
of data augmentation is applied. With this, training data can be augmented
to make up for their lack, to balance them when they are biased and to
improve the quality of data as training data. Therefore, we can expect that
the generalization performance is improved by using the data augmentation.

In this thesis, we propose output augmentation ([6]), which is a new ap-
proach to improve generalization performance without data augmentation.
For some given training data, the output augmentation generates new data
as if they are outputs from the neural network. We will show that output
augmentation strongly helps to get higher generalization performance.
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1.2 Purpose of the study and structure of
this thesis

Purpose of the study
We capture the effectiveness of output augmentation by demonstrating

image classification for the datasets CIFAR-10 and CIFAR-100, which are
widely used in the field of computer vision. Specifically, we consider neural
networks with a training dataset which is obtained with and without us-
ing data augmentation. Then we let them learn usually or by using output
augmentation. Accordingly, we obtain four types of trained models, and we
compare them by focusing on their generalization performance. We then
show that the proposed output augmentation improves the generalization
performance of image classification and then we obtained the following re-
sults:

• For the model trained without data augmentation, the method of out-
put augmentation improves the accuracy for the test data.

• In the case of the model with data augmentation, the method of output
augmentation seems to improve the accuracy not so much.

Structure of this thesis The thesis is organized as follows:

Chapter 1: Background, motivation, and positioning of this study.

Chapter 2: Related research on data augmentation.

Chapter 3: Overview of neural networks.

Chapter 4: Output augmentation.

Chapter 5: Experimenting image classification by using output augmenta-
tion.

Chapter 6: Conclusions and future work.
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Chapter 2

Previous research

Data augmentation is a method to generate data from a given training
dataset to prepare a new training dataset to use in training a model. With
this, training data can be augmented to make up for their lack, to balance
them when they are biased, and to improve the quality of data as training
data. It applies to various types of a dataset, such as image and audio data.
Then the generalization performance is naturally expected to be improved.
We will mainly discuss image data since this thesis deals with them.

For example, in the case where we deal with image data, data augmen-
tation often performs affine transformations and changing colors of images.
The affine transformations have the effects of rotations, reflections, scalings
(zooming in and out), and croppings. These give rise to geometric defor-
mations in the image. This method allows us to increase the number of
training data ([7]), and we can use the dataset as a new training dataset to
use when we train models. It is then known that these procedures balance the
dataset([8]), improve the quality of data and improve training efficiency. The
most common methods of color modification include histogram equalization,
contrast or brightness adjustment, white balancing, sharpening, and blurring
([9]). These methods are fast, repeatable, and are often used, and codes im-
plementing them can be used within the modern deep learning frameworks
such as TensorFlow ([10]), PyTorch ([11]), etc.

However, we have to take care not to lose the essence of objects in the
image when using data augmentation. In other words, it is necessary to take
into account the learning procedure of a neural network so that they can
discriminate between the differences among objects in images after training.
For example, in the handwritten hiragana classification, if an image of hi-
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ragana is inverted using data augmentation, it will be rendered meaningless
as hiragana. Another example is the classification of handwritten numbers,
where a “6” becomes a “9” when rotated 180 degrees. These matters are often
overcome by introducing the so-called domain knowledge of data, knowledge
of a specific field under consideration. If one does not pay attention to the
domain knowledge of the data, applying data augmentation to datasets may
lead to poor performance of trained models.

Among data augmentation, there is a very powerful method called Au-
toAugment ([12]) that automatically selects the appropriate one from sev-
eral methods of data augmentation. AutoAugment tests various kinds of
data augmentations on a subset of the training dataset and selects the best
performing one among them. Therefore, AutoAugment assigns each of the
training data with an optimal data augmentation. Throughout the whole
procedure of training, the optimal method is then called and applied to each
subset of the training dataset. This is very powerful, but it takes a very high
computational cost because it needs to try many different data augmentation
methods.

For audio data, several methods of data augmentation are used. For
example, time-stretching is used to speed up or slow down the playback speed.
There are also other methods of cutting specified frequencies of sound and
turning down parts of sounds for a certain period of time ([13]). The sounds
that we hear in our daily lives are often mixed with a lot of noise, making
it difficult to hear them. In order to reproduce artificially such situations,
there is a method of adding noise generated from a normal distribution to
the audio data. There is also a method to increase the number of audio data
by cutting out a portion of the speech time ([14]).
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Chapter 3

Neural networks

3.1 Artificial intelligence and neural networks
In this section, we will explain the position of neural networks by following
[15].

Artificial intelligence is a field of research containing three main subfields:
machine learning, neural networks, and deep learning. The relation of them
is shown in the figure below.

Neural networks

Deep learning

Machine learning

Artificial intelligence

Figure 3.1: Positioning of neural networks.

We will explain each of them in the following.

Artificial intelligence
Artificial intelligence refers to a general term for programs that models
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information-processing of how humans think, or for anything we find in-
telligent. Machine learning, neural networks, and deep learning, which will
be explained below, are regarded as typical examples of artificial intelligence.

Machine learning
Machine learning is a general terminology of making computers and other
devices gain abilities of mimicking how humans learn from their experiences.
This usually consists of various computer algorithms. By discovering rules
and patterns from the data used for learning, and then by applying the rules
and patterns to new data, the machine gets the ability of prediction for
unknown data.

Neural networks
The human brain is composed of more than hundreds of millions of neu-
rons. When a neuron is stimulated, an electrical signal is transmitted. If
the electrical signal exceeds a certain level called a threshold, then the signal
is transmitted to the next neuron. A neural network is a model of how the
neurons (Figure 3.2) in the human brain are connected to each other. In the
neural network, the counterpart of a neuron in the brain is called a unit.

Figure 3.2: Neuron. This picture is from [16].

Deep learning
In some neural networks, all units in them are divided into some groups,
called layers. A deep neural network is such a neural network which has
many layers, and deep learning refers to training such deep neural networks.
Generally, when we use machine learning, we can make computers learn
patterns and rules efficiently by giving prior advice of what to take notice
of the data. This advice is, however, not necessary for deep learning: Deep

8



neural networks can learn even that information. In other words, it is possible
to train the networks efficiently without setting the features to be focused on,
which is in turn the major advantages of deep learning. However, since the
model can now learn such features by itself using deep learning, here arises
a problem that we can not find what features the model extracted from the
training dataset and the reason for decisions by the trained model.

3.2 Neural networks
As described above, a neural network is a model that mimics how the neurons
build a network in the brain. We present the framework of neural networks
by following [17, 18, 19]. The artificial substitutes of neurons in the model
are called units (Figure 3.3). Each unit is equipped with similar mechanisms
of neuronal input and output, as explained in the following. When an input
signal u is given to a unit, the unit output a signal of the form

z = h(u + b).

Namely, if the value of input u exceeds the threshold −b then the unit fires
according to the value of the function h at the positive value of u + b. The
function h is called an activation function.

<latexit sha1_base64="d52h17UisvqKMnVh+ryxDTo6P90="></latexit>x1
<latexit sha1_base64="A1SR3OUYuZ+nSOfj3Tfhdo/yOS8="></latexit>x2

<latexit sha1_base64="Tvg5owvMHTvE155zkJIwIUcQuKk="></latexit>x3

<latexit sha1_base64="NS9k3UnDudORu0vT2aC4sMayWEY=">AAACZnichVHLSsNAFD2Nr1ofrYoouCmWiqsykaLWVdGNS7X2AbWUJI41mBdJWqnFHxDc6sKVgoj4GW78ARf9A8VlBTcuvEmDIqLeYTJnztxz50yubGmq4zLWDgk9vX39A+HByNDwyGg0NjZecMy6rfC8YmqmXZIlh2uqwfOu6mq8ZNlc0mWNF+WDNe+82OC2o5rGttu0eEWXaoa6pyqSS1TusCpWYwmWYn7EfwIxAAkEsWHGbrCDXZhQUIcODgMuYQ0SHBpliGCwiKugRZxNSPXPOY4RIW2dsjhlSMQe0LdGu3LAGrT3ajq+WqFbNJo2KeNIskd2yzrsgd2xZ/b+a62WX8Pz0qRV7mq5VY2eTOfe/lXptLrY/1L96dnFHpZ9ryp5t3zGe4XS1TeOzju5la1ka45dsRfyf8na7J5eYDReletNvnWBiN+AjB/xLlhKByAjfjagsJASF1PpzXQiuxq0IowZzGKe/vcSsljHBvJ0bw2nOMN56EkYFSaFqW6qEAo0E/gWQvwDoV2LNA==</latexit>w1
<latexit sha1_base64="ktzFl5XX0AKHi1POeBCYMm+qAk8=">AAACZnichVHLSsNAFD2Nr1ofrYoouAkWxVWZSvG1Et247MNWQaUkcazBNAlJWqnFHxDc6sKVgoj4GW78ARf9A8VlBTcuvJkERUS9w2TOnLnnzplc1TZ012OsFZE6Oru6e6K9sb7+gcF4Ymi45Fo1R+NFzTIsZ1NVXG7oJi96umfwTdvhSlU1+IZ6sOqfb9S54+qWue41bL5TVSqmvqdrikdU4bA8W04kWYqJkH+CdAiSCCNrJW6wjV1Y0FBDFRwmPMIGFLg0tpAGg03cDprEOYR0cc5xjBhpa5TFKUMh9oC+FdpthaxJe7+mK9Qa3WLQdEgpY4o9slvWZg/sjj2z919rNUUN30uDVjXQcrscPxkvvP2rqtLqYf9L9adnD3tYEF518m4Lxn+FFujrR+ftwlJ+qjnNrtgL+b9kLXZPLzDrr9p1jucvEBMNWBQhB2A+E4LF9GcDSrOp9Fwqk8skl1fCVkQxgUnM0P+exzLWkEWR7q3gFGc4jzxJg9KoNBakSpFQM4JvIckfo12LNQ==</latexit>w2

<latexit sha1_base64="IKN6S9DbDji1rvkVJTOO/b8wU5k="></latexit>w3 <latexit sha1_base64="nvtNrhP1Hx91uflNzGee8MlXFpU="></latexit>z

<latexit sha1_base64="yYinrgm4bLsPs9P/BJXn7vz/5l0="></latexit>

......

<latexit sha1_base64="ncnWhNmHY2Z6A+1ogUFgOPewd78="></latexit>u <latexit sha1_base64="m6LsPSH0DsrMlb2Kdmp2szqPgTY="></latexit>z

Figure 3.3: Unit.

There are many such units in a neural network. They are divided into
several groups called layers and form a hierarchical structure according to
which layer each unit belongs to. The number of units in a layer is called
width of the layer. Layers in the network are called the input layer (first
layer), second layer, third layer and so on, in order. The last layer of the
network is called the output layer. The layers except the input layer and
the output layer are called hidden layers. In the following, the number of all
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layers will be denoted by L, and for each l = 1, 2, . . . , L, we denote by nl the
number of units in the l-th layer. We number all units in the l-th layer as
1, 2, 3, . . . , nl.
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<latexit sha1_base64="jhuzqZgGlntht5n9kKikt7mmVts=">AAACbXichVHLSsNAFD2Nr1ofrYogKFIs1bop01KsdVV047Jaq2LVksSpBtMkJGlBS3/AteBCFBRExM9w4w+46CeICxcKblx4mwRFRL3DZM6cuefOmVzJUBXLZqzpE9raOzq7/N2Bnt6+/mBoYHDV0qumzAuyrurmuiRaXFU0XrAVW+XrhsnFiqTyNWl/oXW+VuOmpejain1g8K2KuKspZUUWbaI2DkvJ7XosOd0IlEIRFmdOhH+ChAci8CKnh66xiR3okFFFBRwabMIqRFg0ikiAwSBuC3XiTEKKc87RQIC0VcrilCESu0/fXdoVPVajfaum5ahlukWlaZIyjCh7YDfshd2zW/bI3n+tVXdqtLwc0Cq5Wm6Ugkcj+bd/VRVabex9qf70bKOMWcerQt4Nh2m9Qnb1tcOTl/zccrQ+yS7ZE/m/YE12Ry/Qaq/y1RJfPoXbgIwTYRekUx7IJD4bsJqMJ2biqaVUJDvvtcKPUUwgRv87jSwWkUOB7tVwjDOc+56FYWFMGHdTBZ+nGcK3EKY+AIOBjWE=</latexit>

z(2)2

<latexit sha1_base64="HBQC456nPpN54IcMxddjvtmDlOw=">AAACbXichVHLSsNAFD2Nr1pfVREERYqlWjdlWotaV0U3LttqVdRakjjW0DQJSVrQ4g+4FlyIgoKI+Blu/AEX/QRx4ULBjQtvk6CIqHeYzJkz99w5kysZqmLZjDV8QktrW3uHvzPQ1d3T2xfsH1i19Kop87ysq7q5LokWVxWN523FVvm6YXKxIql8TSovNs/Xaty0FF1bsfcNXqiIJU3ZVWTRJmrjoDi9XY8mpg4DxWCYxZgToZ8g7oEwvMjowWtsYQc6ZFRRAYcGm7AKERaNTcTBYBBXQJ04k5DinHMcIkDaKmVxyhCJLdO3RLtNj9Vo36xpOWqZblFpmqQMIcIe2A17Yffslj2y919r1Z0aTS/7tEqulhvFvqPh5bd/VRVabex9qf70bGMXc45XhbwbDtN8hezqawcnL8vzuUh9gl2yJ/J/wRrsjl6g1V7lqyzPncJtQMqJkAtmkx5IxT8bsJqIxWdiyWwynF7wWuHHCMYRpf89izSWkEGe7tVwjDOc+56FIWFUGHNTBZ+nGcS3ECY/AIWIjWI=</latexit>

z(2)3

<latexit sha1_base64="hUavs62Bi+iGUlc5b4ZisFNHZJs=">AAACbXichVHLSsNAFD2N7/poVQRBkWKp1k2ZlOJrVXTjsq1WxaoliaOGpklI0kJb/AHXggtRUBARP8ONP+DCTxAXLhTcuPA2CYqIeofJnDlzz50zubKpqbbD2ENAaGlta+/o7Ap29/T2hcL9A6u2UbEUnlcMzbDWZcnmmqrzvKM6Gl83LS6VZY2vyaXF5vlalVu2augrTs3kW2VpT1d3VUVyiNqoF1PbjXhy6iBYDEdZgrkR+QlEH0ThR8YIX2ETOzCgoIIyOHQ4hDVIsGkUIILBJG4LDeIsQqp7znGAIGkrlMUpQyK2RN892hV8Vqd9s6btqhW6RaNpkTKCGLtn1+yF3bEb9sjef63VcGs0vdRolT0tN4uhw+Hlt39VZVod7H+p/vTsYBezrleVvJsu03yF4umr9eOX5flcrDHBLtgT+T9nD+yWXqBXX5XLLM+dwGvAnBsRD8ykfDAnfjZgNZkQpxOpbCqaXvBb0YkRjCNO/3sGaSwhgzzdq+MIpzgLPAtDwqgw5qUKAV8ziG8hTH4Ah4+NYw==</latexit>

z(2)4

<latexit sha1_base64="UWTvivSuOgixybadkBkIKKN9ZKQ=">AAACbXichVFNLwNRFD0dX1UfLSKREGk0pTbNGxrFSthYaquIopkZr0xMZyYz0yY0/oC1xEJISETEz7DxByz6E8TCgsTGwu3MhIjgvrx55513z33nzZVNTbUdxuoBoam5pbUt2B7q6OzqDkd6eldso2IpPK8YmmGtyZLNNVXneUd1NL5mWlwqyxpflfcWGuerVW7ZqqEvO/sm3yxLO7paUhXJIWr9oChu1RKT44ehYiTGksyN6E8g+iAGP5aMyDU2sA0DCioog0OHQ1iDBJtGASIYTOI2USPOIqS65xyHCJG2QlmcMiRi9+i7Q7uCz+q0b9S0XbVCt2g0LVJGEWcP7Ia9sHt2yx7Z+6+1am6Nhpd9WmVPy81i+Ggg9/avqkyrg90v1Z+eHZQw7XpVybvpMo1XKJ6+enDykpvNxmuj7JI9kf8LVmd39AK9+qpcZXj2FF4DZtyIeiCd8sGM+NmAlYmkOJVMZVKxuXm/FUEMYgQJ+t9pzGERS8jTvTqOcYbzwLPQLwwJw16qEPA1ffgWwtgHg32NYQ==</latexit>

z(3)1

<latexit sha1_base64="x1SOv83RInHNRe82da3Ca+TILWY=">AAACbXichVHLSsNAFD2Nr1pfVREERYqlWjdlWotaV0U3LttqVdRakjjW0DQJSVrQ4g+4FlyIgoKI+Blu/AEX/QRx4ULBjQtvk6CIqHeYzJkz99w5kysZqmLZjDV8QktrW3uHvzPQ1d3T2xfsH1i19Kop87ysq7q5LokWVxWN523FVvm6YXKxIql8TSovNs/Xaty0FF1bsfcNXqiIJU3ZVWTRJmrjoJjYrkenpw4DxWCYxZgToZ8g7oEwvMjowWtsYQc6ZFRRAYcGm7AKERaNTcTBYBBXQJ04k5DinHMcIkDaKmVxyhCJLdO3RLtNj9Vo36xpOWqZblFpmqQMIcIe2A17Yffslj2y919r1Z0aTS/7tEqulhvFvqPh5bd/VRVabex9qf70bGMXc45XhbwbDtN8hezqawcnL8vzuUh9gl2yJ/J/wRrsjl6g1V7lqyzPncJtQMqJkAtmkx5IxT8bsJqIxWdiyWwynF7wWuHHCMYRpf89izSWkEGe7tVwjDOc+56FIWFUGHNTBZ+nGcS3ECY/AIWEjWI=</latexit>

z(3)2

<latexit sha1_base64="1ANRZOzNDlI1XjdRn5Lr9uYK+zo=">AAACbXichVHLSsNAFD2Nr1pfVREERYqlWjdlaotVV6Ibl221KmotSRxraJqEJC3U4g+4FlyIgoKI+Blu/AEX/QRx4ULBjQtvk6CIqHeYzJkz99w5kysZqmLZjDV8QktrW3uHvzPQ1d3T2xfsH1iz9Iop85ysq7q5IYkWVxWN52zFVvmGYXKxLKl8XSotNc/Xq9y0FF1btWsGz5fFoqbsKbJoE7V5UEjs1KOJqcNAIRhmMeZE6CeIeyAML9J68Brb2IUOGRWUwaHBJqxChEVjC3EwGMTlUSfOJKQ45xyHCJC2QlmcMkRiS/Qt0m7LYzXaN2tajlqmW1SaJilDiLAHdsNe2D27ZY/s/ddadadG00uNVsnVcqPQdzS88vavqkyrjf0v1Z+ebexh1vGqkHfDYZqvkF199eDkZWU+G6lPsEv2RP4vWIPd0Qu06qt8leHZU7gNmHMi5IJU0gNz8c8GrE3H4jOxZCYZXlj0WuHHCMYRpf+dwgKWkUaO7tVwjDOc+56FIWFUGHNTBZ+nGcS3ECY/AIeLjWM=</latexit>

z(3)3

<latexit sha1_base64="sNN9WuuM1kvWa7JtFZYUmmweMD8=">AAACbXichVHLSsNAFD2Nr1pfVREERYqlWjdlaouvVdGNy7ZaW6xakjhqME1Ckha0+AOuBReioCAifoYbf8CFnyAuXCi4ceHNA0VEvcNkzpy5586ZXMlQFctm7CEgNDW3tLYF20MdnV3dPeHevhVLr5kyL8i6qpslSbS4qmi8YCu2ykuGycWqpPKitLvgnBfr3LQUXVu29wy+XhW3NWVLkUWbqNVaJbXRiKcmDkKVcJQlmBuRnyDpgyj8yOrhK6xhEzpk1FAFhwabsAoRFo0ykmAwiFtHgziTkOKecxwgRNoaZXHKEIndpe827co+q9HeqWm5apluUWmapIwgxu7ZNXthd+yGPbL3X2s13BqOlz1aJU/LjUrP4eDS27+qKq02dr5Uf3q2sYUZ16tC3g2XcV4he/r6/vHL0lw+1hhjF+yJ/J+zB3ZLL9Dqr/JljudP4DVg1o2IB6bTPphNfjZgZTKRnEqkc+loZt5vRRBDGEWc/vc0MlhEFgW6V8MRTnEWeBYGhGFhxEsVAr6mH99CGP8AfV6NXg==</latexit>

u(3)
3

<latexit sha1_base64="Zqu/7QwXe8Z/V0NwdE3kaD6r474=">AAACbXichVHLSsNAFD2N7/poVQRBkWKp1k2ZaFHrqujGZX1UxaolidMamiYhSQta+gOuBReioCAifoYbf8CFnyAuXCi4ceFtEhQR9Q6TOXPmnjtncmVTU22HsYeA0NTc0trW3hHs7OruCYV7+9Zso2IpPKsYmmFtyJLNNVXnWUd1NL5hWlwqyxpfl0sLjfP1Krds1dBXnX2Tb5eloq4WVEVyiNqs5Cd3avGpiXowH46yBHMj8hOIPojCj4wRvsIWdmFAQQVlcOhwCGuQYNPIQQSDSdw2asRZhFT3nKOOIGkrlMUpQyK2RN8i7XI+q9O+UdN21QrdotG0SBlBjN2za/bC7tgNe2Tvv9aquTUaXvZplT0tN/Ohw8GVt39VZVod7H2p/vTsoIBZ16tK3k2XabxC8fTVg+OXlbnlWG2MXbAn8n/OHtgtvUCvviqXS3z5BF4DUm5EPDCT9EFK/GzA2mRCnE4kl5LR9LzfinYMYRRx+t8zSGMRGWTpXh1HOMVZ4FkYEIaFES9VCPiafnwLYfwDe1eNXQ==</latexit>

u(3)
2

<latexit sha1_base64="+QlIGrZdxE6AQpI45NFJbu11peM=">AAACbXichVHLSsNAFD2Nr1pfVREERYqlWjdlosVaV0U3LrVaFbWWJI4aTJOQpIVa+gOuBReioCAifoYbf8BFP0FcuFBw48LbJCgi6h0mc+bMPXfO5MqmptoOY/WA0NTc0toWbA91dHZ194R7+1Zto2QpPKcYmmGty5LNNVXnOUd1NL5uWlwqyhpfkw/mG+drZW7ZqqGvOBWT54vSnq7uqorkELVRKojb1fjURC1UCEdZgrkR+QlEH0Thx6IRvsYWdmBAQQlFcOhwCGuQYNPYhAgGk7g8qsRZhFT3nKOGEGlLlMUpQyL2gL57tNv0WZ32jZq2q1boFo2mRcoIYuyB3bAXds9u2SN7/7VW1a3R8FKhVfa03Cz0HA0uv/2rKtLqYP9L9adnB7uYcb2q5N10mcYrFE9fPjx5WZ7Nxqpj7JI9kf8LVmd39AK9/KpcLfHsKbwGpN2IeCCV9EFa/GzA6mRCnE4kl5LRzJzfiiCGMIo4/e8UMljAInJ0r45jnOE88CwMCMPCiJcqBHxNP76FMP4BeVCNXA==</latexit>

u(3)
1

<latexit sha1_base64="2pXPmOCxxomaOKc7heS8QsKgpoc=">AAACbXichVHLSsNAFD2N7/poVQRBkWKp1k2ZlKLWlejGpVrbilpLEkcNTZOQpIVa/AHXggtRUBARP8ONP+DCTxAXLiq4ceFtEhQR9Q6TOXPmnjtncmVTU22HsceA0NLa1t7R2RXs7untC4X7B3K2UbEUnlUMzbDWZcnmmqrzrKM6Gl83LS6VZY3n5dJi8zxf5ZatGvqaUzN5oSzt6equqkgOURuVorhdjyenDoPFcJQlmBuRn0D0QRR+LBvha2xhBwYUVFAGhw6HsAYJNo1NiGAwiSugTpxFSHXPOQ4RJG2FsjhlSMSW6LtHu02f1WnfrGm7aoVu0WhapIwgxh7YDWuwe3bLntj7r7Xqbo2mlxqtsqflZjF0NJx5+1dVptXB/pfqT88OdjHrelXJu+kyzVconr56cNLIzK3G6hPskj2T/wv2yO7oBXr1Vbla4aun8BqQdiPigZmUD9LiZwNyyYQ4nUitpKLzC34rOjGCccTpf89gHktYRpbu1XGMM5wHXoQhYVQY81KFgK8ZxLcQJj8Ad02NWw==</latexit>

u(2)
1

<latexit sha1_base64="ozGGptv14jpy2icAk7PkYwOvRpw=">AAACbXichVHLSsNAFD2Nr1ofrYogKFIs1bopk1KsuhLduFRrVdRakjitoWkSkrSgxR9wLbgQBQUR8TPc+AMu/ARx4aKCGxfeJkERUe8wmTNn7rlzJlc2NdV2GHsMCC2tbe0dwc5QV3dPbzjS179mG1VL4TnF0AxrQ5Zsrqk6zzmqo/EN0+JSRdb4ulxeaJ6v17hlq4a+6uybPF+RSrpaVBXJIWqzWkjt1BOpycNQIRJjSeZG9CcQfRCDH0tG5Brb2IUBBVVUwKHDIaxBgk1jCyIYTOLyqBNnEVLdc45DhEhbpSxOGRKxZfqWaLflszrtmzVtV63QLRpNi5RRxNkDu2ENds9u2RN7/7VW3a3R9LJPq+xpuVkIHw1l3/5VVWh1sPel+tOzgyKmXa8qeTddpvkKxdPXDk4a2dmVeH2cXbJn8n/BHtkdvUCvvSpXy3zlFF4DZtyIeiCT9sGM+NmAtVRSnEqml9OxuXm/FUEMYwwJ+t8ZzGERS8jRvTqOcYbzwIswKIwIo16qEPA1A/gWwsQHeVSNXA==</latexit>

u(2)
2

<latexit sha1_base64="QaekDlI1+vk2/GB7giBhc4C0Zew=">AAACbXichVHLSsNAFD2N7/poVQRBkWKp1k2ZaFHrqujGZX1UxaolidMamiYhSQta+gOuBReioCAifoYbf8CFnyAuXCi4ceFtEhQR9Q6TOXPmnjtncmVTU22HsYeA0NTc0trW3hHs7OruCYV7+9Zso2IpPKsYmmFtyJLNNVXnWUd1NL5hWlwqyxpfl0sLjfP1Krds1dBXnX2Tb5eloq4WVEVyiNqs5Kd2avHJiXowH46yBHMj8hOIPojCj4wRvsIWdmFAQQVlcOhwCGuQYNPIQQSDSdw2asRZhFT3nKOOIGkrlMUpQyK2RN8i7XI+q9O+UdN21QrdotG0SBlBjN2za/bC7tgNe2Tvv9aquTUaXvZplT0tN/Ohw8GVt39VZVod7H2p/vTsoIBZ16tK3k2XabxC8fTVg+OXlbnlWG2MXbAn8n/OHtgtvUCvviqXS3z5BF4DUm5EPDCT9EFK/GzA2mRCnE4kl5LR9LzfinYMYRRx+t8zSGMRGWTpXh1HOMVZ4FkYEIaFES9VCPiafnwLYfwDe1uNXQ==</latexit>

u(2)
3

<latexit sha1_base64="6AULfiBu6vCA3+z8DhqA11aOZTo=">AAACbXichVHLSsNAFD2N7/poVQRBkWJR66ZMSlHrSnTjsrVWi1VLEkcNTZOQpIVa/AHXggtRUBARP8ONP+DCTxAXLiq4ceFtEhQR9Q6TOXPmnjtncmVTU22HsceA0NLa1t7R2RXs7untC4X7B9Zso2IpPKcYmmHlZcnmmqrznKM6Gs+bFpfKssbX5dJS83y9yi1bNfRVp2byrbK0p6u7qiI5RG1UisnteiwxfRgshqMsztyI/ASiD6LwI22Er7GJHRhQUEEZHDocwhok2DQKEMFgEreFOnEWIdU95zhEkLQVyuKUIRFbou8e7Qo+q9O+WdN21QrdotG0SBnBBHtgN6zB7tkte2Lvv9aquzWaXmq0yp6Wm8XQ0XD27V9VmVYH+1+qPz072MWc61Ul76bLNF+hePrqwUkjO78yUZ9kl+yZ/F+wR3ZHL9Crr8pVhq+cwmtAyo2IB2aTPkiJnw1YS8TFmXgyk4wuLPqt6MQIxhGj/z2LBSwjjRzdq+MYZzgPvAhDwqgw5qUKAV8ziG8hTH0AfWKNXg==</latexit>

u(2)
4

<latexit sha1_base64="dctQR5yZVWRKrxyT7Plym/lYNpE="></latexit>y1

<latexit sha1_base64="jeuEWbz3/TU2ICz/a9Lneeo7Qzw="></latexit>y2

<latexit sha1_base64="pZmNpTv0aSunYoG2wZeOQS3joYg="></latexit>y3

<latexit sha1_base64="GkUVq73PyOAa1gqTqjf/gWFMeYA="></latexit>

l = 1
<latexit sha1_base64="IdKmy//XMUIEIeGpTF6MX7/vCRQ="></latexit>

l = 2
<latexit sha1_base64="m5L9Gh9mHGqdNH7QlJNOrK7nPHs="></latexit>

l = 3
<latexit sha1_base64="kAkCja285p/WOVtAhCgll3+Da54="></latexit>

l = 4

Figure 3.4: A neural network consisting of four layers.

Continuous functions that approximate the step function (Figure 3.5) are
often used as activation functions of neural networks. Typical example is the
sigmoid function shown in Figure 3.6.
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Figure 3.5: Step function.
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Figure 3.6: Sigmoid function.

3.2.1 Input layer (l = 1)
The layer that receives data to the neural network is called the input layer.
In the neural network shown in Figure 3.4, the input layer consists of five

11



units, so the input vector x has five components as follows.

x =





x1

x2

x3

x4

x5





.

All units in the input layer do not have activation functions, therefore the
output z(1) =

[
x1, x2, x3, x4, x5

]!
from the input layer (l = 1) is equal to the

input vector x. Namely, we have

z(1) = x,

or equivalently to say,

z(1)
i = xi for i = 1, 2, 3, 4, 5.

3.2.2 Hidden layers (l = 2, . . . , L − 1)
The output signal x from the input layer is then received to the next layer
through a linear transformation represented by W (2) =

[
w(2)

ji

]

ji
. This matrix

is a numerical representation of the strength of the connection between i-th
unit in the input layer and j-th unit in the next layer.

The input u(l)
j of j-th unit in l-th layer

Let z(l−1)
i be the output from i-th unit in (l − 1)-th layer. This is of the form

z(l−1) =
[
z(l−1)

1 , z(l−1)
2 , . . . , z(l−1)

nl−1

]!
∈ Rnl−1 .

This is received to the next layer after applying linear transformation de-
scribed as

u(l) = W (l)z(l−1),

where W (l) =
[
w(l)

ji

]

ji
is an (nl−1, nl) matrix representing strength of the

connection between i-th unit in the (l − 1)-th layer and j-th unit in the l-th
layer. With its components, the output u(l) can be written as follows.

u(l) =
[
u(l)

1 , u(l)
2 , . . . , u(l)

nl

]!
∈ Rnl .

12



For each j = 1, 2, . . . , nl, the component u(l)
j represents the input signal of

the j-th unit in the l-th layer.
In the case of the neural network shown in Figure 3.4, the input u(3)

1 to
first unit of the third layer is calculated as follows:

u(3)
1 =

4∑

i=1
w(3)

1i z(3)
i

= w(3)
11 z(3)

1 + w(3)
12 z(3)

2 + w(3)
13 z(3)

3 + w(3)
14 z(3)

4 .

The output signal z(l)
j of j-th unit in l-th layer

For a given input u(l)
j to j-th unit in l-th hidden layer, we consider the output

z(l)
j from the unit. The output z(l)

j is obtained as a result of transformation
given by applying the activation function h(l) to the output signal u(l)

j from
the previous layer, which is shifted by a vector of bias parameters, namely

b(l) =
[
b(l)

1 , b(l)
2 , . . . , b(l)

nl

]!
.

Consequently, we have the following: for j = 1, 2, . . . , nl,
z(l)

j = h(l)
(
u(l)

j + b(l)
j

)

= h(l)
(nl−1∑

i=1
w(l)

ji z(l−1)
i + b(l)

j

)

.

We also write this relation by omitting subscripts as follows.
z(l) = h(l)

(
u(l) + b(l)

)

= h(l)
(
W (l)z(l−1) + b(l)

)
,

where we reinterpret h(l) as a mapping Rnl → Rnl by applying h(l) component-
wisely.

In the case of neural network shown in Figure 3.4, the output z(3)
1 from

the first unit in the third layer is calculated as follows:
z(3)

1 = h(3)
(
u(3)

1 + b(3)
1
)

= h(3)
( 4∑

i=1
w(3)

1i z(2)
i + b(3)

1

)

= h(3)
(
w(3)

11 z(3)
1 + w(3)

12 z(3)
2 + w(3)

13 z(3)
3 + w(3)

14 z(3)
4 + b(3)

1
)

.
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The output z(l)
j from j-th unit in l-th layer has been so far written as

z(l)
j = h(l)

(
u(l)

j + b(l)
j

)

= h(l)
(nl−1∑

i=1
w(l)

ji z(l−1)
i + b(l)

j

)

.

Sometimes we let the bias b(l)
j have a meaning of a weight related to “0-th

unit” in the (l − 1)-th layer by considering the output of the unit is one,
namely, we set w(l)

j0 = b(l)
j and z(l)

0 = 1. This convention makes the notation
be simple. In fact, the output z(l)

j from the j-th unit in the l-th layer is then
written as follows:

z(l)
j = h(l)

(
u(l)

j + b(l)
j

)

= h(l)
(nl−1∑

i=1
w(l)

ji z(l−1)
i + b(l)

j

)

= h(l)
(nl−1∑

i=0
w(l)

ji z(l−1)
i

)

.

3.2.3 Output layer (l = L)
Finally, we consider the output ŷ = z(L) from the L-th layer, i.e., the
output layer. If output from the (L − 1)-th layer is given by z(L−1) =[
z(L−1)

1 , z(L−1)
2 , . . . , z(L−1)

nL−1

]!
, then the input to the L-th layer, which we denote

by u(L) =
[
u(L)

1 , u(L)
2 , . . . , u(L)

nL

]!
, is given as follows:

u(L) =
[
u(L)

1 , u(L)
2 , . . . , u(L)

nL

]!

=
[nL−1∑

i=0
w(L)

1i z(L−1)
i ,

nL−1∑

i=0
w(L)

2i z(L−1)
i , . . . ,

nL−1∑

i=0
w(L)

nLiz
(L−1)
i

]!

,

where we have set z(L−1)
0 = 1 and for each j = 1, 2, . . . , nL, w(L)

j0 stands for
a bias. If we put W (L) =

[
w(L)

ji

]

ji
, this relation is also written as u(L) =

W (L)z(L−1). Then an activation function h(L) applies to this component-
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wisely and we obtain the output as follows:

ŷj = z(L)
j

= h(L)
(
u(L)

j

)

= h(L)
(nL−1∑

i=0
w(L)

ji z(L−1)
i

)

.

To summarize, we can think of a neural network as a family of functions
described as follows:

ŷ = h(L)(u(L))

= h(L)(W (L)z(L−1))

= h(L)
(
W (L)h(L−1)(u(L−1))

)

...
= h(L)

(
W (L)h(L−1)(W (L−1)h(L−2)

(· · · W (l+1)h(l)(W (l)h(l−1)(· · · W (2)h(1)(x))) · · · ))
)

,

where the activation function h(1) in the input layer is assumed to be the
identity mapping.

This completes the explanation of the mechanism of neural networks. Let
us now summarize this into the mathematical definition in the following.

Definition 1. Let L be a natural number. For given natural numbers
n1, n2, . . . , nL and functions h(l) : R → R, l = 2, 3, . . . , L, a neural network
of depth L is the family {ŷ(x; w)}w of functions

ŷ(x; w) = Ψ ◦ Φ(W (L−1),b(L−2))
L−1,L−2 ◦ · · · ◦ Φ(W (l),b(l−1))

l,l−1 ◦ · · · ◦ Φ(W (3),b(2))
3,2 (W (2)x),

where w, Φ(W (l),b(l−1))
l,l−1 , Ψ are described as follows:

(1) w = (W (l), b(l))L
l=2, (W (l), b(l)) ∈ (Rnl ⊗ Rnl−1) × Rnl , l = 2, 3, . . . , L.

(2) For each l, Φ(W l,bl−1)
l,l−1 : Rnl−1 → Rnl is a mapping defined by

Φ(W l,bl−1)
l,l−1 (u) = W (l)h(l−1)(u(l−1) + b(l−1)), u(l−1) ∈ Rnl−1 .
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(3) The mapping Ψ : RnL → RnL is defined by

Ψ(u(L)) := h(L)(u(L) + b(L)) :=





h(L)(u(L)
1 + b(L)

1 )
h(L)(u(L)

2 + b(L)
2 )

...
h(L)(u(L)

nL
+ b(L)

nL
)




.

Then w is called the parameter, nl is called the width of l-th layer, and h(l)

is called the activation function in l-th layer.

3.2.4 Activation function
In this section, we introduce various activation functions.

Identity function
The identity function h(x) returns the input as it is, that is, it holds that

h(x) = x.

In the case of regression problems, it is used in the output layer.
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Figure 3.7: Identity function.
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Step function
The step function outputs 1 if the input value is positive, and 0 otherwise.
Namely, it is defined by

h(x) =




1 if x > 0,
0 if x ≤ 0.

The step function is one of the oldest neuron models proposed by W. Mac-
Culloch and W. Pitts in 1943 ([2]). Although the neuron model had been
mainly used during the first boom of neural networks, it has not been for
now. This is because the derivative of the step function can not be defined
at x = 0 and it is 0 elsewhere, and therefore the function is not appropriate
for the gradient descent method explained in Section 3.3.2.
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Figure 3.8: Step function.

Sigmoid function
The sigmoid function is an approximation of the step function and it is
differentiable at any points. The representation of the sigmoid function is
given by

h(x) = 1
1 + e−x

. (3.1)
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The advantage of using the sigmoid function as a neuron model is that the
derivative of the sigmoid function can be written by using the sigmoid func-
tion itself as follows:

h′(x) = −e−x

(1 + e−x)2 = 1
1 + e−x

−e−x

1 + e−x
= 1

1 + e−x

(
1 − 1

1 + e−x

)

= h(x) (1 − h(x)) .

Therefore we can compute the derivative h′(x) only by knowing the value of
h(x). As the sigmoid function returns values in the range from 0 to 1, the
values are often interpreted as probabilities.
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Figure 3.9: Sigmoid function.

Hyperbolic tangent function
When we need both positive and negative values of an activation function,
the hyperbolic tangent function is a possible choice as an activation function.
The representation of it is given by

h(x) = tanh x = ex − e−x

ex + e−x
.

Using this, the sigmoid function (3.1) can be expressed as follows:

tanh(x/2) + 1
2 .
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Figure 3.10: Hyperbolic tangent function.

Hard hyperbolic tangent function
The hard hyperbolic tangent function is a piecewise linear approximation of
the hyperbolic tangent function. It is defined by

h(x) =






1 if 1 ≤ x,
x if −1 < x < 1,
−1 if x ≤ −1.
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Figure 3.11: Hard hyperbolic tangent function.
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Rectified linear unit (ReLU)
If the gradient of an activation function is too small, it causes the so-called
vanishing gradient problem, which matters in an efficient learning using gradi-
ent descent method. The sigmoid function or the hyperbolic tangent function
may be in the case as the gradients of them are less than 1. To avoid the
problem, the rectified linear unit (ReLU) is widely used. The definition is as
follows:

h(x) = max{0, x} =




x if x > 0,
0 if x ≤ 0.
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Figure 3.12: ReLU.

The derivative of ReLU is 1 for positive input, which resolves the vanish-
ing gradient problem.

Softplus function
The softplus function is an approximation of ReLU and it is smooth. It is
defined by

h(x) = log(1 + ex).
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Figure 3.13: Softplus function.

Leaky rectified linear unit (Leaky ReLU)
The leaky rectified linear unit is an improvement of ReLU to reflect the effect
of negative input. For a given α ∈ (0, 1], the representation of the leaky ReLU
is given by

h(x) =




x if x > 0,
αx if x ≤ 0.

Usually the value of α is set to 0.01.
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Figure 3.14: Leaky ReLU, α = 0.3.

Softmax function
The activation function of the output layer of a neural network for classi-

21



fication problems is known as the discriminant function. The discriminant
function is often chosen as a softmax function

hi(x) = exp(xi)
J∑

j=1
exp(xj)

, x =
[
x1, x2, . . . , xJ

]!
.

The value hi(x) is interpreted as a probability that x belongs to i-th class.
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Figure 3.15: Softmax function.

3.3 Training a neural network
The training of a neural network means how to take “good” parameters w and
is usually performed based on a loss function. The loss function is usually
defined by using output of the network whose inputs are from a training
dataset. Then the parameters are taken so that the loss function attains its
minimum value.

3.3.1 Loss function
A loss function is a concept of how much we penalize the present parameters
in the model and is usually realized as a function of parameters. We think
that the smaller the penalty for the parameters, the closer to the “truth” or
proper output (which is sometimes called a label, target, teacher signal and
so on).
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There are various types of loss functions, they are used according to what
types of problems we want to solve. In the following, we introduce some of
the most commonly used.

• Mean Square Error
The mean square error is the basis of the loss function used not only in
neural networks but also in various other models and problems. Typical
one is a regression problem of fitting models to data.
For a given training dataset D = {(xi, yi)}N

i=1, output ŷ of a neural
network, and the parameters w of the network, the mean square error
is the sum of the squares of the difference between the output ŷ(xi; w)
associated to xi and the correct output yi (the teacher signal):

L (ŷ(x1; w), ŷ(x2; w), . . . , ŷ(xN ; w)) = 1
N

N∑

i=1
(ŷ(xi; w) − yi)2 .

We denote this by L(w) if it causes no confusion.

• Cross-entropy for J-class classification problems
Cross-entropy is often used for classification problems. In this setting,
the training dataset is a form of D = {(xi; yi1, yi2, . . . , yiJ)}N

i=1, where
for each i, only one of yi1, yi2, . . . , yiJ is 1 and the others are 0. If
yij = 1, then we think that “xi belongs to the class j”. Output ŷ
are modeled as probabilities and then we consider the cross-entropy of
the output ŷ(xi; w) (probability) relative to the correct output yi =
(yi1, yi2, . . . , yiJ):

L (ŷ(x1; w), ŷ(x2; w), . . . , ŷ(xN ; w)) = 1
N

N∑

i=1



−
J∑

j=1
yij log ŷj(xi; w)



 .

Minimizing this quantity is equivalent to maximizing the log-likelihood
of the output of the network with respect to the training dataset. We
denote this again by L(w) if it causes no confusion.

3.3.2 Gradient descent method
To find a minimum point of a loss function built by using a neural network
is highly difficult and we can not often find its closed form expression. This
motivates us instead to try a numerical calculation of the minimum point.
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In this section, we introduce the gradient descent method, which is one of
the methods to find the parameter w∗ numerically that minimizes the loss
function L(w). The concept is to get an optimal parameter by rolling a ball
on the graph of the loss function as shown in Figure 3.16. The place where
the ball finally stops represents the point (w∗, L(w∗)).
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Figure 3.16: Gradient descent method 1.

For a given starting point of the ball, the gradient descent method deter-
mines the position

w(t) =





w1(t)
w2(t)

...
wd(t)





on the graph at time t = 1, 2, 3 . . .. The initial value of the parameter w(0) is
often determined by following a d-multivariate normal distribution N (0, Σ).
We adopt this convention. The slope of the place where the ball places is
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calculated by the gradient of the loss function,

∇L(w) = ∂L(w)
∂w

=





∂L(w)
∂w1

∂L(w)
∂w2...

∂L(w)
∂wd





.

Then the parameters are updated by using the following equation:

w(t + 1) = w(t) − η ∇L(w)|w=w(t) ,

where, η is a hyperparameter called the learning rate, which adjusts how
much of the parameter is updated at each time and has to be determined
before we use the gradient descent method.

3.3.3 Stochastic gradient descent method
The gradient descent method allows us to update parameters by a simple
algorithm. However, it might be problematic when the ball is trapped at the
local minimum w∗∗ which is not the global minimum, as shown in Figure 3.17.
Depending on how large the learning rate is, the ball might be trapped in
the well of the local minima eternally.
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Figure 3.17: Gradient descent method 2: The point (w∗, L(w∗)) is the goal
which we want the ball to reach. But the ball might be trapped in the well
around (w∗∗, L(w∗∗)) if the velocity of the ball is not sufficient.

To avoid such a situation, the method of stochastic gradient descent
(SGD) is also used. This method adds a random noise to the process of
gradient descent method.

A subset of a given training dataset is called a minibatch. Training using
a minibatch is called minibatch learning of the model. To make a clear differ-
ence, the training with the whole dataset is called a batch learning. Stochastic
gradient descent or online learning refers to a collection of minibatch learn-
ings associated with randomly-selected subsets of the whole dataset.

By using the output ŷ(xi; w) of the neural network and the training
dataset D = {(xi, yi)}N

i=1, the loss function L(w) for batch learning is given
by

L(w) = 1
N

N∑

i=1
Li(w),

where Li(w) is a loss function associated with the datum (xi, yi). Some
examples of Li are described in the following.

• Summand of Mean Square Error

Li (ŷ(x1; w), ŷ(x2; w), . . . , ŷ(xN ; w)) = (ŷ(xi; w) − yi)2 . (3.2)
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• Summand of Cross-entropy for J-class classification

Li (ŷ(x1; w), ŷ(x2; w), . . . , ŷ(xN ; w)) = −
J∑

j=1
yij log ŷj(xi; w). (3.3)

Recalling that the parameters are updated by using the learning rate η
and the following rule

w(t + 1) = w(t) − η ∇L(w)|w=w(t) ,

we see that the batch learning uses the whole training dataset in a single
update of parameters.

Next, we will discuss about minibatch learning. Suppose that a training
dataset D = {(xi, yi)}N

i=1 is given. First, we take M ∈ N so that M divides
N and then we divide D into M subsets Bt’s as follows:

D = {(xi, yi)}N
i=1 = B1 ∪ B2 ∪ · · · ∪ BM ,

where Bt = {(x(t−1) N
M +i, y(t−1) N

M +i)}
N
M
i=1 for t = 1, 2, . . . , M . Each Bt is a

minibatch. We have |B1| = |B2| = · · · = |BM | = N
M and each |Bt| is called the

minibatch size of Bt, which represents the number of data in the minibatch.
When using stochastic gradient descent, we sort randomly the order of the
training data before preparing minibatch Bt from the training dataset D.

The loss function LBt(w) associated with the minibatch Bt is defined by
the following:

LBt(w) = 1
|Bt|

∑

i: (xi, yi) ∈ Bt

Li(w).

The parameters are updated by using the following equation.

w(t + 1) = w(t) − η ∇LBt(w)|w=w(t) .

Each minibatch Bt is used to update the parameters. An epoch is the col-
lection of all these updates. The epoch is said to be completed when these
updates are done. In the next epoch, we take a new random division of D
and repeat the same procedures. Those processes are continued until the
values of the loss function are regarded as convergent.
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3.3.4 Backpropagation
Deep neural networks have a large number of hidden layers and so a huge
number of parameters. Then the calculation of gradient, which is needed for
gradient descent, becomes very complicated and computationally expensive.
Backpropagation is a method to speed up the update of parameters in each
layer. It divides the calculation of the whole derivatives into that of each
layer, and the computation goes backwards, i.e., from the output layer as we
shall see below.

Recall that by using input to the respective layer,

u(l) = W (l)z(l−1)

= W (l)h(l−1)(u(l−1)),

the output ŷ of the neural network is expressed as follows:

ŷ = h(L)(u(L))

= h(L)(W (L)z(L−1))

= h(L)
(
W (L)h(L−1)(u(L−1))

)

...
= h(L)

(
W (L)h(L−1)(W (L−1)h(L−2)

(· · · W (l+1)h(l)(W (l)h(l−1)(· · · h(1)(x))) · · · ))
)

.

From this expression, we see that the output of the neural network is com-
posed of many nonlinear functions. Therefore one naturally expects that the
calculation of partial derivatives of ŷ, which is needed for that of the gradient
∇L(w), will be a heavy task.

In order to explain the method of error backpropagation, we first consider
the calculation of the gradient ∂L(w)

∂W (l) with respect to the parameter W (l) of
l-th layer. Note that the output u(l) from the l-th layer can be written as
u(l) = W (l)z(l−1). Then, by the chain rule for derivatives of the composite
functions, the gradient ∂L(w)

∂W (l) can be calculated as follows.

∂L(w)
∂W (l) = ∂u(l)

∂W (l)
∂L(w)
∂u(l) .
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Then, by using the relation u(l) = W (l)z(l−1), ∂u(l)

∂W (l) can be calculated as

∂u(l)

∂W (l) = ∂

∂W (l)

(
W (l)z(l−1)

)

= z(l−1).

For the term ∂L(w)
∂u(l) , we again apply the chain rule and we get

∂L(w)
∂u(l) = ∂u(l+1)

∂u(l)
∂L(w)
∂u(l+1) .

By using the relation u(l+1) = W (l+1)z(l) = W (l+1)h(l)(u(l)), we have

∂u(l+1)

∂u(l) = ∂

∂u(l)

(
W (l+1)h(l)(u(l))

)

= h(l)′(u(l))W (l+1)!.

Therefore, if we put δ(l) = ∂L(w)
∂u(l) , we see that δ(l) has the following recursive

relation:

δ(l) = ∂u(l+1)

∂u(l) δ(l+1)

= h(l)′(u(l))W (l+1)! δ(l+1).

When data are input to the neural network, the computation proceeds
from the input layer to the output layer via the hidden layers, but on the
contrary, the derivatives are calculated by the above recursive formula and
the values are determined from the output layer. Furthermore, the vector
involved in the above formula is the derivative of the transformation between
adjacent layers, which can be computed in advance and can be implemented
easily on a computer when we use the gradient descent method. Hence we
can easily solve the above recurrence formula on a computer.
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Figure 3.18: Updating parameters by backpropagation.

30



Chapter 4

Output augmentation

In this chapter, we propose a novel method named output augmentation
(OA), which is the main contribution of the thesis. First, we explain data
augmentation, which is a traditional method to increase the number of data.
Next, we propose the OA, and explain the difference between OA and data
augmentation.

4.1 Data augmentation
To obtain a well-trained neural network, we generally need large amounts
of pairs of input data and their target outputs to avoid overfitting of the
network. When the number of input data which we have is not sufficient, we
need to increase the number of them. The method of data augmentation is
applied to this situation. Data augmentation increases the number of input
data by duplicating the existing data with slight changes. For example,
when we use image data as input data, we require the target output of some
input data to be invariant under some kind of geometric deformation of
image such as rotations, reflections, and scalings. On the other hand, we can
increase the number of input image data by applying geometric deformations
to images which we have. However, geometric deformations have some kind
of limitation. For example, when we rotate the digit “6” by 180 degrees,
the digit no longer represents the target output “six”; it rather represents
“nine”. It means that a big deformation of image may affect its target output,
therefore when we apply geometric deformations to images, we have to be
careful not to change the target outputs. In some sense, the input data
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should be changed within some “suitable” range. Such kind of knowledge of
the limitation is called domain knowledge, and is very important to use data
augmentation.

For a pair (x, t) of the input and its target output, data augmentation is a
method to generate new data (x̃, t)’s from a pair (x, t) where x̃’s are slightly
modified copies of the input x (Figure 4.1-4.2).

Figure 4.1: Example of image data x.

Figure 4.2: Examples of image data x̃’s generated by applying data augmen-
tation to the image data x in Figure 4.1.

4.2 Concept of output augmentation
Let y = ŷ(x; w) be the output of the neural network for input data x, and
ỹ = ŷ(x̃; w) be the output for x̃. It is important to control how much x̃
deviates from the original x. It depends on the modulus of continuity of
the network ŷ(x; w). We naturally expect that ỹ places around y up to the
distance ε in the output space: |ỹ − y| < ε. For this, we have to control a
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radius parameter r which plays the role of how much x̃ deviates from x, i.e.,
|x̃ − x| < r. It is r that is what we explained “suitable” range above, which
is derived from domain knowledge. In later chapters, this will be controlled
by a hyperparameter of a model.

・
・

・
・

Input Output

Figure 4.3: Points x and x̃ in the input space and the corresponding points
y and ỹ in the output space.

Let (y, t) be a pair of the network-output and its target. OA is a method
to generate virtual outputs (ỹ, t)’s from the pair (y, t), where ỹ’s are slightly
modified copies of output y. Along with this, advantages of OA can be
contrasted with data augmentation as follows.

• For data augmentation, we must take into account the domain knowl-
edge of each input data, where the domain knowledge refers to the
characteristics of the data. On the other hand, for OA, we only need
to adjust the range of the augmented output without knowing the do-
main knowledge of the input data. In particular, we don’t need to take
care of the domain knowledge about the input training data, and this
is a great advantage when we deal with image data.

• To update parameters many times until the parameters are regarded
as convergent, training with a dataset obtained by a traditional data
augmentation requires generating a lot of pairs of input data and output
data. On the other hand, we need less input data if we adopt OA.
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…

・ ・ ・

Input layer

Loss function

Gradient

Output layerHidden layer

Backpropagation

Figure 4.4: Training a neural network using OA.

4.3 OA and the associated rule of parameter
update

In this section, we give a concrete description of output augmentation (OA)
and then determine how to update the parameters using OA.

4.3.1 Description of OA
Suppose that we have a neural network of depth L. We denote the input
variable by x. In the network, let u(l) be the input to the l-th layer, and
let z(l) be the output from the l-th layer. We denote by W (l) and h(l) the
parameters and the activation function in the l-th layer, respectively. Note
that u(l) has the following recurrence equation.

u(l) = W (l)z(l−1)

= W (l)h(l−1)(u(l−1)).

To describe OA, we first consider an augmentation of the neural network,
in which the input variable is denoted by x. Let ε = [ε1, ε2, . . . , εnL ]! be an
nL-dimensional random vector distributed as N (0, σ2InL), where InL is the
nL-order identity matrix and σ2 is a hyperparameter. Then we set ŷaug as
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follows:

ŷaug = h(L)(u(L) + ε)

= h(L)(W (L)z(L−1) + ε)

= h(L)
(
W (L)h(L−1)(u(L−1)) + ε

)

...
= h(L)

(
W (L)h(L−1)(W (L−1)h(L−2)

(· · · W (l+1)h(l)(W lh(l−1)(· · · h(1)(x))) · · · )) + ε
)

.

Compare this with the output of the neural network, i.e., ŷ(x; w) = h(L)(u(L)(x; w)).
We sometimes write ŷaug as ŷaug(x; w) or ŷaug,ε(x; w) to emphasize the input
variable x, the parameter w = (W (l))L

l=2 of the network, and even the noise ε
we attached. We regard ŷaug,ε(x; w) as an augmentation of the output ŷ(x; w)
(or we might regard as an augmentation of the neural network itself), and
in this sense, this procedure of generation of ŷaug is what we call the output
augmentation (OA). Let us emphasize that ŷ(x; w) is augmented but not for
x and y.

Typical forms of ŷaug are varied according to choices of the last activation
function h(L), some of which are presented in the following.

• If h(L) is a sigmoid function, we have

ŷaug = h(L)(u(L) + ε)

= 1
1 + exp(−u(L) + ε) .

• If h(L) is a softmax function for J-class classification, we have

ŷj
aug = h(L)

j (u(L) + ε) = exp(u(L)
j + εj)

J∑

m=1
exp(u(L)

m + εm)
, j = 1, 2, . . . , J,

where nL = J , ε =
[
ε1, ε2, . . . , εJ

]!
∼ N (0, σ2IJ) and

ŷaug =
[
ŷ1

aug, ŷ2
aug, . . . , ŷJ

aug

]!
.
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4.3.2 Rule of parameter update
Suppose that we are given a training dataset D = {(xi, yi)}N

i=1. Let ε1, ε2, . . . , εN

be N independent and identically distributed nL-dimensional random vec-
tors distributed as N (0, σ2InL). We put ε∗ = [ε1, ε2, . . . , εN ]. By using the
augmentations ŷaug,εi(xi; w)’s, we introduce below two loss functions Laug,ε∗

adapted to the framework of OA and tasks under consideration.

• Mean squared error:

Laug,ε∗(w) = 1
N

N∑

i=1
{ŷaug,εi(xi; w) − yi}2

= 1
N

N∑

i=1

{
h(L)

(
u(L)(xi; w) + εi

)
− yi

}2
,

where u(L)(xi; w) stands for the input to the L-th layer corresponding
to the input xi and the parameter w.

• Cross-entropy for J-class classification: With noting that
now nL = J ,

Laug,ε∗(w) = 1
N

N∑

i=1




−
J∑

j=1
yij log ŷj

aug,εi
(xi; w)






= 1
N

N∑

i=1




−
J∑

j=1
yij log h(L)

j

(
u(L)(xi; w) + εi

)



 ,

where u(L)(xi; w) stands for the input to the L-th layer corresponding
to the input xi and the parameter w.

Note that the above loss functions Laug,ε∗(w) determine penalties from D =
{(xi, yi)}N

i=1 to the common parameters w of the augmented networks ŷaug,εi(x, w),
i = 1, 2, . . . , N rather than that of ŷ(x, w).

For a given parameter w(t) of the network, we update this by the following
equation:

w(t + 1) = w(t) − η∇wLaug,ε∗(w)|w=w(t).
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The gradient ∇wLaug,ε∗(w) =
[

∂Laug,ε∗

∂W (l) (w)
]L

l=2
can be calculated as follows:

∂Laug,ε∗

∂W (l) = ∂u(l)

∂W (l)
∂Laug,ε∗

∂u(l)

= z(l−1) ∂Laug,ε∗

∂u(l) .

For l = 1, 2, . . . , L − 1, we define δ(l)
aug by

δ(l)
aug := ∂Laug,ε∗

∂u(l)

= ∂u(l+1)

∂u(l)
∂Laug,ε∗

∂u(l+1)

= h(l)′(u(l))W (l+1)! δ(l+1)
aug .

For l = L, we define δ(l)
aug = δ(L)

aug =
[
δ(L)

aug,1, δ(L)
aug,2, . . . , δ(L)

aug,J

]!
by the following.

δ(L)
aug,j = ∂Laug,ε∗

∂u(L)
j

=
J∑

k=1

∂h(L)
k (u(L) + ε∗)

∂u(L)
j

∂Laug,ε∗

∂ŷk
, j = 1, 2, . . . , J.

4.4 Algorithms for parameter update
In this section, we present algorithms to update parameters of a neural net-
work by using OA. To compare with traditional data augmentation, we first
explain the algorithm to update parameters by using data augmentation, and
after that, we explain the algorithm to update parameters by using OA.

4.4.1 The case of traditional data augmentation
Suppose that we have a neural network of depth L and a training dataset
D = {(xi, yi)}N

i=1 is given. For each (x, y) ∈ D, we apply traditional data
augmentation to x to generate K augmentations x̃1, x̃2, . . . , x̃K . We put
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conventionally x̃0 = x. By collecting these data, we obtain an enlarged
dataset

D̃ =
{
(x̃k, y) : (x, y) ∈ D, k = 0, 1, . . . , K

}
.

We randomly chose a division of D̃ into (K + 1) subsets (minibatches)
Bt’s, D̃ = ∪K

t=0Bt. Note that all sizes of minibatches are the same, namely
it holds that |Bt| ≡ |D̃|/(K + 1) = |D|. Denote B as representative of one
of minibatches B0, B1, . . . , BK . Then we define a loss function LB associated
with the minibatch B by

LB(w) = 1
|B|

∑

(x̃,y)∈B
L(x̃,y)(w),

where L(x̃,y)(w) is a penalty from (x̃, y) to the parameter w of the network
ŷ(x; w) determined depending on the task under consideration (see e.g., equa-
tions (3.2) and (3.3)). Then the traditional algorithm to update parameters
is described in the following table. To make it simpler, we have renamed the
elements in Bk as x̃k

1, x̃k
2, . . . , x̃k

N (and now it may not hold that x̃0
i = xi).

Table 4.1: Parameter update algorithm using traditional data augmentation,
in each epoch; w(t) is the initial parameter in the epoch. Totally (K + 1)
updates of parameters are performed in an epoch.

Process Minibatch Input Output
1 B0 x̃0

i ’s ŷ(x̃0
i ; w(t))’s

2 B1 x̃1
i ’s ŷ(x̃1

i ; w(t + 1))’s
... ... ... ...

1 + K BK x̃K
i ’s ŷ(x̃K

i ; w(t + K))’s
Process Parameter update

1 w(t + 1) = w(t) − η∇wLB0|w=w(t)

2 w(t + 1 + 1) = w(t + 1) − η∇wLB1|w=w(t+1)
... ...

1 + K w(t + 1 + K) = w(t + K) − η∇wLBK |w=w(t+K)
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4.4.2 The case of output augmentation
Suppose that a training dataset D = {(xi, yi)}N

i=1 is given. We take inde-
pendent and identically distributed random vectors ε(1)∗, ε(2)∗, . . . , ε(K)∗ ∼
N (0, σ2InL)⊗N , where we recall that nL is the width of the output layer.
Note that for each k = 1, 2, . . . , K, the random vector ε(k) is of the form

ε(k)∗ = [ε(k)1, ε(k)2, . . . , ε(k)N ] =





ε(k)1
1 ε(k)1

2 . . . ε(k)1
N

ε(k)2
1 ε(k)2

2 . . . ε(k)2
N

... ... ... ...
ε(k)nL

1 ε(k)nL
2 . . . ε(k)nL

N




.

For each k = 1, 2, . . . , K, we denote by

ŷaug,ε(k)i(xi; w) = h(L)
(
u(L)(xi; w) + ε(k)i

)
, i = 1, 2, . . . , N,

output augmentations of the output ŷ(xi; w)’s. The associated loss function
will be denoted by Laug,ε(k)∗ . Then we determine an algorithm to update
parameters as shown in the following table.

Table 4.2: Parameter update algorithm using OA, in each epoch; D =
{(xi, yi)}N

i=1 is the training dataset; w(t) is the initial parameter in the epoch.
Totally (K +1)-updates of parameters are performed in an epoch, here, note
that the parameters of outputs are fixed to w(t) during all processes in an
epoch.

Process Batch Input Output
1 D xi’s ŷ(xi; w(t))’s
2 D xi’s ŷaug,ε(1)i(xi; w(t))’s
... ... ... ...

1+K D xi’s ŷaug,ε(K)i(xi; w(t))’s
Process Parameter update

1 w(t + 1) = w(t) − η∇wL|w=w(t)

2 w(t + 2) = w(t + 1) − η∇wLaug,ε(1)∗|w=w(t)
... ...

1 + K w(t + K + 1) = w(t + K) − η∇wLaug,ε(K)∗|w=w(t)
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Note that the parameter w(t) used in the network during whole processes
in an epoch doesn’t change. Therefore, if we stock calculations of the output
from the layer just before the last in the first process, we can recycle them in
the whole process of calculating outputs (in fourth column in Table 4.2) and
gradients (fifth column in Table 4.2) in the sequel. This is a crucial feature
of the OA method making the computational cost economic when compared
with training using traditional data augmentation described in Section 4.4.1.

In Table 4.2, each process can be replaced by the minibatch learning
by dividing D into minibatches. In the experiments reported in Chapter 5,
we have used this algorithm in which each process is replaced by minibatch
learning.
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Chapter 5

Experiments

In this chapter, the effectiveness of output augmentation (OA) is shown by
the experiments designed as follows. We perform image classification for the
datasets CIFAR-10 and CIFAR-100 ([20]) by using ResNet-18 ([21]), which
is a neural network of depth L = 18. CIFAR-10 and CIFAR-100 contain
images of 10 and 100 different objects, respectively. We compare totally
six models: One is plain and we denote it by “Basic”; One is trained using
AutoAugment (AA), which is known as one of the most effective methods
among traditional ones of data augmentation, and we express it as “AA”;
Two of them are trained using OA where the noises to be attached have
different distributions. We denote these by “OA” in both cases; The other
two are trained using both AA and OA where the noises to be attached are
the same as the previous models OA’s, respectively. We denote these by
“AA+OA” in both cases. For the models using OA below, the learning rates
are fixed to η = 0.01 and ε denotes representative of noises we attach to each
unit in the output layer.

• Basic

• AA

• OA (K = 2, 5, 10, ε ∼ N (0, σ2), σ2 = 1, 3)

• OA (K = 2, 5, 10, ε ∼ U [−a, a), a = 1, 3)

• AA+OA (K = 2, 5, 10, ε ∼ N (0, σ2), σ2 = 1, 3)

• AA+OA (K = 2, 5, 10, ε ∼ U [−a, a), a = 1, 3)
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Regarding the description of parameters in the list above, N (·) denotes a
normal distribution, and U [−a, a) is the uniform distribution on the interval
[−a, a).

To make the total number of parameter-updates the same among these
different models, we arrange the total number of epochs for each model.
Then we compute the accuracy on test data, which is by definition the ratio
between the number of correctly-classified data and that of total data, to
observe the generalization performance of trained models.

Table 5.1: Classification accuracy for CIFAR-10 test data.
Method CIFAR-10

Basic AA
SGD (300 epochs) 0.7765 0.8848
OA (100 epochs): K = 2, ε ∼ N (0, 1) 0.8214 0.8789
OA (100 epochs): K = 2, ε ∼ N (0, 3) 0.8411 0.8828
OA (100 epochs): K = 2, ε ∼ U [−1, 1) 0.8147 0.8880
OA (100 epochs): K = 2, ε ∼ U [−3, 3) 0.8311 0.8922
SGD (600 epochs) 0.7765 0.8921
OA (100 epochs): K = 5, ε ∼ N (0, 1) 0.8643 0.8891
OA (100 epochs): K = 5, ε ∼ N (0, 3) 0.8750 0.8965
OA (100 epochs): K = 5, ε ∼ U [−1, 1) 0.8604 0.8933
OA (100 epochs): K = 5, ε ∼ U [−3, 3) 0.8110 0.8858
SGD (1100 epochs) 0.7765 0.8936
OA (100 epochs): K = 10, ε ∼ N (0, 1) 0.8009 0.8769
OA (100 epochs): K = 10, ε ∼ N (0, 3) 0.8621 0.8929
OA (100 epochs): K = 10, ε ∼ U [−1, 1) 0.8010 0.8694
OA (100 epochs): K = 10, ε ∼ U [−3, 3) 0.8110 0.8858
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Table 5.2: Classification accuracy for CIFAR-100 test data.
Method CIFAR-100

Basic AA
SGD (300 epochs) 0.4697 0.6360
OA (100 epochs): K = 2, ε ∼ N (0, 1) 0.5287 0.6289
OA (100 epochs): K = 2, ε ∼ N (0, 3) 0.5509 0.6330
OA (100 epochs): K = 2, ε ∼ U [−1, 1) 0.5328 0.6277
OA (100 epochs): K = 2, ε ∼ U [−3, 3) 0.5799 0.6391
SGD (600 epochs) 0.4697 0.6490
OA (100 epochs): K = 5, ε ∼ N (0, 1) 0.5990 0.6372
OA (100 epochs): K = 5, ε ∼ N (0, 3) 0.6209 0.6512
OA (100 epochs): K = 5, ε ∼ U [−1, 1) 0.5980 0.6391
OA (100 epochs): K = 5, ε ∼ U [−3, 3) 0.6013 0.6400
SGD (1100 epochs) 0.4697 0.6501
OA (100 epochs): K = 10, ε ∼ N (0, 1) 0.5416 0.6338
OA (100 epochs): K = 10, ε ∼ N (0, 3) 0.5946 0.6454
OA (100 epochs): K = 10, ε ∼ U [−1, 1) 0.4842 0.6167
OA (100 epochs): K = 10, ε ∼ U [−3, 3) 0.5106 0.6266

Table 5.1 and Table 5.2 show that the proposed method, OA, improves
test accuracy significantly for both CIFAR-10 and CIFAR-100 datasets. On
the other hand, in the case where both OA and traditional data augmentation
are used, we find that the test accuracy is slightly improved. It is interesting
that use of only OA improves the test accuracy significantly but not so much
for use of both AA and OA. In the use of both AA and OA, input data is
augmented and so “shifted” from the original one, and then the corresponding
network-output is further “shifted”, which might give too much deviance from
the true target.

It is also worth mentioning that the test accuracy for Basic with OA is not
so bad compared with that of AA with SGD in spite of the less computational
cost. This suggests that OA can be used as a substitute for the traditional
data augmentation if the hyperparameters, the distributions of ε’s, of OA
are well chosen.

43



Chapter 6

Conclusions

In this thesis, we proposed a new method of data augmentation, which is
named output augmentation, to improve the generalization performance.
Data augmentation is generally used on training data to compensate for
the lack of the data or adjust the balance if the data are biased. For a
given training data, our new method augments the output corresponding to
the data, namely, it generates an arbitrary number of new data as if they
are output from the neural network, while the traditional method of data
augmentation does for the input data.

We have seen at least two main advantages of output augmentation: Tra-
ditional data augmentation for images requires the domain knowledge of the
training data, and requires some laborious processing before adding the aug-
mented data to the training dataset and feeding them to the neural network.
On the other hand, output augmentation and the algorithms for parameter
update with it don’t touch the input data. Therefore we are free from such
bothersome processing and it doesn’t increase the amount of input data to
feed to the neural network, which keeps the computational cost economical.

Finally, we showed that the method of output augmentation improves
the accuracy for test data in the case of image classification for the datasets
CIFAR-10 and CIFAR-100. It is naturally expected that output augmenta-
tion is an alternative to the traditional methods of data augmentation.
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