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ABSTRACT. In this note, we give a proposition which is dual to the non-
substitution theorems. The nonsubstitution theorems assert that whatever
composition of the final demand vector is designated, the same group of
production processes can remain efficient under a set of conditions. Our
proposition tells us that under almost the same set of conditions, whatever
labour input coefficient vector is observed, the same group of commodities re-
main non-free. This is an easy consequence of linear programming approach
to the nonsubstitution theorems. In the literature, however, this proposition
has been overlooked or neglected.
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1 Introduction

This note is to present a proposition which is dual to the nonsubstitution
theorems in linear economic models. The nonsubstitution theorems tell us
that under certain conditions for any nonnegative vectors of final demand,
we can find the same set of production processes which are efficient in terms
of labour force employed, provided that a rate of balanced growth is given
and fixed. At present, an efficient proof of the nonsubstitution theorems is by
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using a linear programming problem: see Bose[6], Chander|8], and Fujimoto
et al.[20]. Since a duality relation may hold in linear programming problems,
we can establish a proposition dual to the nonsubstitution in an easy way.
That is, our new theorem asserts that whatever changes are made in the
labour input coefficient vector, the same set of commodities are found to be
non-free, provided that a uniform rate of profit is fixed and no process earns
super-normal profits. For the sake of simplicity, we assume a given profit rate
is zero. In the literature, however, this theorem has been neglected, surely
because it is not so impressive as the nonsubstitution theorems.

In the next section, we explain notation and state our assumptions. Then
in section 3, the main proposition is presented. The final section contains a
numerical example and some remarks. In the references, we give the papers
and the books relevant to the topic for the reader’s convenience, though many
of them are not cited in the text.

2 Notation and Assumptions

Let X and Y be the Euclidean spaces over the real field R, and we assume
X is of dimension m, i.e., R™, and Y is of dimension n, i.e., R®. The
spaces X and Y have their nonnegative orthant, X, = R} and Y, = R}
respectively. By these cones X, and Y., we have a natural order in X and
Y. Symbols in vector comparison are:

> y<=uz; >y for all i
> y<=g; >y for all 1 and z #y;

> y<=x; >y for all i.

These symbols are used also for matrix comparison.

Given n x m matrices A and B stand for the material input coefficient
matrix and output coefficient matrix respectively, with their corresponding
columns being individual production processes. We define M = B — A. A
given n-column vector d > 0 means the fixed final demand vector, while
a parametrical m-row vector £ € X, represents a labour input coefficient
vector. The symbols £-z for z € X, and y-d for y € Y, show the inner-
product. We interpret = as a variable m-column vector of activity levels of
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production processes, while y is a variable n-row vector of wage-unit prices.
Thus, the inner-product ¢.z means the amount of labour force employed
when the processes are used as described by =, and the inner-product y -d
means the value of the final demand vector when the prevailing prices are y.

When we deal with the nonsubstitution theorems, it is assumed that
n < m. In this note, we assume n > m: the number of commodities is
greater that that of production processes.

Let us now consider the following linear programming problem:

min £-z subject to Mz >d and z € X, (P)

and its dual:

max y-d subject to yM < ¢ and y € Y,. (D)
v

We make the following assumptions.

Assumption Al. The problem (P) has a feasible vector z° € X such that
Mz® > 0.

This assumption Al requires that our economy be productive enough
so that there is a vector of activities which realizes excess supply of every
commodity. Thanks to this assumption, an optimal solution pair z* and y*
exist and there is no duality gap, {-z* =y* -d.

We collect the commodities which have a positive price in ¥*, and denote
by NF the index set of these non-free goods. One more assumption is:
Assumption A2. The cardinality of NF' is not less than m, and moreover
there exists a regular m x m submatrix M* of M such that (M*)~! > 0.

This assumption is rather restrictive, and yet is satisfied when each com-
modity is produced only by one process, which is dual to the supposition
of absence of joint production. (In our example below, however, every com-
modity is produced by a plural number of processes.)

Now we define an m-row vector y** = £(M*)~!, and form an n-row
competitive price vector y*° which equals y** for the index set in M* with
the remaining entries being zero. Thus we have

YoM =¢,

from which it follows

y*°Mz* =0-12°. 1)
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On the other hand, because of the rule of free goods ( i.e., if there is an
excess supply for a good in an optimal production z*, that good is free in
an optimal price vector ¥*), and since y*° has more zero’s than 3*, we have

y-OMxt — y-(? L d. (2)

Hence it is confirmed that y*° is also an optimal solution to (D). One more
relation

Mz =d (3)

follows from the definition of M*.

3 Main Proposition

‘We now prove our main proposition.

Theorem: Whatever changes are made in the labour input coefficient vector,
we can find the same set of commodities which remain non-free under a
competitive price vector. Besides, that competitive price vector realizes the
maximum value of the fixed final demand among those price vectors which
are feasible in the dual problem (D).

Proof. Whatever ¢ is given, we define y** and y*° as in the previous
section, and the first half of the theorem is obtained. Next, the latter half
of the theorem asserts that if yM < £ and vy € Y, then y-d < y*°-d.
Postmultiply by z* both sides of the constraint of (D), and we get

y-d=yMz* <l.z° =y*.d,

where the left-hand equality comes from eq.(3) and the right-hand equality
from egs.(1) and (2). This completes the proof. O
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4 An Numerical Example and Remarks

Consider the following example:

110 0 01 1
o111 100 =4 _
B=|, 01 , A= 010 |93 ,and =(11 1).
2 0 2 000 1
Thus,
1 1 -1
| =1 3
M=l 1™ g 5
2 0
It is not difficult to verify that
1
*=|1],y=(1110)eand¢s"=y"-d=3
1

We now compute
yw=(111) andy* =9,

and then can further calculate

1 1 -1 Lo %
* S -1 % 1
M=] -11 1 and its inverse (M*)™" = [ 3 ? 0
1
1 -11 03 3
Whené’becomes(l 1 3),3;“:(1 2 2)a.ndy‘°=(] 2 2 0)‘

And we have
0.z =y*.d=5.

As the remarks, we write on two possible generalizations. The first is to
allow for some negative elements in (M*)~! as was done in Fujimoto et al.[20].
In the paper [20], the existence of negative elements is associated with durable
capital goods, and in this dual side also, a natural interpretation of negative
elements may be the same, or more generally proper joint production. The
second extension is in line with Fujimoto et al.[21], incorporating some kinds
of externalities and variable returns.
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