— 117 —

The Monty Hall Dilemma
with Joint Sufficient Statistics”

Hiroaki Fujimoto”

Abstract:

The Monty Hall’s TV show provides a host-guest game, in
which a guest, a lady makes 2-stage decisions to win a prize by
picking out one of 3 choices that a host has offered. After the
guest makes a choice for the first stage, the host reveals another
choice does not give her the prize. If the guest believes equally
likely events to her prior knowledge or indifferent probabilities of
winning the prize, then she will fall into a dilemma between
staying with the first choice and switching it to the other left.
However, to avoid the dilemma, the guest may utilize a sample
data, the past TV game shows: That is, she is able to have quast
experiences from the past shows in learning by her doing of either
staying or switching to win the prize. In this paper, we would
like to study how such a guest, who is supposed to be a Bayesian,
revises her prior knowledge with those data one after another. So
as to describe her knowledge, we employ a Dirichlet distribution.
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O . INTRODUCTION

Say it is known that there are 3 opaque boxes A, B, and C, each of
which contains only one chip among 2 gray and 1 red chips, and that the
chips are identical in size, weight, and so on, but in color. First of all, a
host asks a guest, who 1s supposed to be a lady for convenience’ sake, a
game in which he gives her a winning prize such as a diamond ring if she
picks out the box that contains the red chip. If not, then he gives her
nothing. Secondly, the guest picks up a box whichever she might like ac-
cording to her first hunch or prior knowledge. Thirdly, the host, who
knows whereabouts of the red chip, reveals in front of her that another
box contains a gray chip. Fourthly, the guest is allowed to make another
decision to stick with the first hunch or switch it to the other box left.
Finally, the host shows which box has contained the red one.

The above host-guest game, in which a guest makes 2-stage decisions
to obtain a prize, comes from a TV game show, Let’s Make a Deal.
Monty Hall, the show’s host has seen over 4, 500 programs that a con-
testant as the guest often gets into a dilemma between staying with an
initial choice and switching it to the other remaining after his revelation.
Statistically speaking, the dilemma is caused by the reason why the guest
intuitively expects in her mind that the events of winning the prize are
equally likely, so that each choice has the equal probability of winning it
as a ratio of the unity to the total number 7 of choices or% : The prob-
ability of the win on the first stage is %; but that becomes % on the sec-
ond stage since the total number of choices is reduced by the revelation

from 703 to 7O 2. Hence, she suffers from the dilemma because of
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indifferent probabilities between 2 choices still left after one candidate of
the prize has gone.

Vos Savant (1990a) astonishes those, who believe the events of win-
ning a prize on the Monty Hall’'s TV game show should be equally likely,
by complaining that the probability of winning the prize by staying with
an original choice should not be % derived from % when 70 2 but %
whereas the probability by switching the original choice to the other left
should be % instead of % given by (10 %) when 70 2. It does not seem
successful that vos Savant (1990b) proves her % solution to convert
those believers of equally likely events;' However, a couple of Bayesian
analyses to a 31 years old (at that time) problem of “the 3-prisoner pro-
blem” have come to stand by her because it has a similar structure to the
TV game show. For example, Morgan, Chaganty, Dahila, and Doviak
(1991) improve Mosteller (1965)’s sample space analysis to solve it as an
unconditional probability problem and support vos Savant’s scenario for
the % solution; In addition, Gardner (1992) mentions that he might be
a pioneer (in a 1959 column) to show the% solution by the Bayes’ theo-
rem. They make use of the host’s revelation strategy as a key to apply
the theorem. To briefly see this, assume without losing any generality
that the guest chose Box A with her original hunch of equally likely
events and then the host would reveal Box B as a gray chip. Let A, B, and

C denote an event that Box A, B, and C contains the red chip, respec-

' Her proof looks like as if one substituted 7 0 3 into (10 1/7); but,
Selvin (1975) has already shown a mathematical formula to compute this
kind of probability, giving D. L. Ferguson credit for the formula, which can
be written as 7/{(70 1) (70 1)} after the host’s revelation or at 70 2 and
so 1t provides that 2/{(20 1)(20 1)} O 2/3.
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tively. Then, she believes indifferent probabilities of the red chip in boxes
or P(A)O P(B)O P(C) O % Let b be the host’s strategy to reveal
Box B as a gray chip, and let ¢ be the strategy for Box C. One may think
it sensible as discussed in Lindley (1971) that if Box A contains the red
chip, then he will reveal Box B or C with conditional probabilites of P,
(014D P(2lA)YT % ; if Box B contains it, he must reveal Box C with P,
(bIB)0 0 and P,(¢1B)0O 1; and if Box C has the red one, he reveals Box B
with P(blC)0 1 and P(¢IC)0 0. So, the Bayes’ theorem is able to produce

P(bIC) % P(C)

P(Cb)= 10

_ (1) (1/3) _ 2
(1/2)(1/3)+ ) (1/3)+(1)(1/3) 3

where P.(b)= P.(blA) X P.(A) O P(bIB)x P.(B) O P.(blC)X P(C).

Accordingly, it seems to be widely accepted these days that vos Savant’
s complaint or her % solution is correct due to the sensible strategies for
the host’s revelation.?

However, it is notorious that the Gardner’s Bayesian analysis with
the host’s revelation strategy often derives a counterintuitive solution.
For instance, say it is known to a guest as her prior knowledge that the
probabilities of obtaining the red chip are P,(A)0O %, P.(B) O % and
P(C)O % Other things being equal to the previous assumption, the
analysis gives P, (Cl'b)O (1) (3/8)/{(1/2)(1/2)1 (0)(1/8)1 (1)(3/8)
03/5 and so P.(Alb)O 10 3/50 2/5. It is interesting to see firstly that
P.(Alb)DO % does not remain same as P(A) O % even if not only

Gardner but his advocates insist that it should remain same because of

the reason why the host’s revelation provides no new information about
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the red chip’s whereabouts; secondly that P.(Ab)O % is less than P.(A4)
O % regardless of the reason why Box B is no longer a candidate for the
red chip so that one might expect that at least P.(Alb) > P.(A) should
hold; and thirdly that the guest has to change her mind from Box A to
C since P.(AID)O % is less than P(C1b)0 % although she knows that Box
A has the highest probability among them or P,(A) O % 0o PrP(C)O %
Since it runs counter to one’s intuition, one may wonder how many peo-
ple actually use this sort of analysis:* Shimojo and Ichikawa (1989) have
95 examinees to the 3-prisoner problem, and report with P,(A) O P.(B)
O % and P.(C) O % that only 2% reach a Gardner’s solution of P,(Ab)O
%; Regarding the Monty Hall’s game, Granberg and Brown (1995) re-
port with 228 examinees (but without any probability value) that just

13% switch in the first encounter to the game, and also report with 114

* Hoffman (1998) writes an episode about Erdos, one of the greatest mathe-
maticians in the last century, as an example that “his intuition was not al-
ways perfect.” When Véazsonyi tells Erdos about the dilemma that the
correct answer after the revelation is to switch, he replies ‘No, that is im-
possible. It should make no difference.” Véazsonyi employs a decision tree
for a Bayesian analysis, but it does not convince Erdés at all. One may
think that nothing is wrong with Erdos’ intuition because the 2/3 Bayes’
solution could have been correct if the revelation strategy b, which is impos-
sible to be observed by the guest, were known and given to her.

One may wonder whether or not the Gardner’s Bayesian analysis is useful.
Fujimoto (2001) shows that the analysis might be useless for a rational
guest who minimizes a square-error loss function to take expectations for
the red chip’s whereabouts since any Gardner’s solution fails to minimize
the loss function. Because the host’s strategy b is never to be observable
(nor even to be measurable) by a guest as stated in Footnote 2, it is redun-
dant for the rational guest to expect b by a gray chip to expect the red
chip’s whereabouts, so that the Gardner’s solution can have a larger vari-
ance than an optimal solution given by the loss function has.

w
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examinees that across 50 trials, the average of switching goes up from
12% to 55%.

Therefore, only few people seem to utilize the Gardner’s Bayesian
analysis because it hardly makes an appeal to one’s intuition, and no one
seems to make use of it and learn the guest’s always-switch strategy,
which must be suggested by a Gardner’s solution such as vos Savant’s
% one, since it is impossible for one to observe the host’s strategy as
mentioned in Footnote 2. Moreover, even though advocates of the Gard-
ner’s Bayesian analysis usually blame those poor results or performances
not on the Gardner’s analysis but on student examinees as if they were
not rational at all times, the analysis itself seems to be irrational as dis-
cussed in Footnote 3. Furthermore, it seems to be difficult tasks for such
a classical Bayesian analysis, in which any prior knowledge to an experi-
ment is treated as an unknown constant, to revise the knowledge by a
sample and take into account its weight information or a sample size n as
Anand (1991) claims.

Our main purpose is to study how a guest, who takes into account a
sample like past TV shows, revises her prior knowledge by the sample
one after another. In order to achieve the purpose, we assume the guest
1s a modern Bayesian who assigns a Dirichlet distribution to her prior
knowledge, and proceed with this paper as follows: In Section 2, we con-
sider the host-guest game as a so-called no data problem in Berger (1985)
where the host has already revealed a gray chip but not yet shown the
final result or datum of the red chip. We have a 3-point or multi-
Bernoulli distribution because there are only 3 possible outcomes of the

red chip’s whereabouts in the beginning of the game. It will be shown
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that after the gray chip is revealed by the host, the guest has a condi-
tional mathematical expectation given that gray chip as her optimal deci-
sion so as to estimate the red chip’s whereabouts; In Section 3, we
consider the game as a so-called Bayesian statistics problem in Hogg and
Craig (1995) where any prior knowledge to an experiment that a statis-
tician has is treated as a random variable because the 3-point distribution
depends upon 2 population parameters of experimental values of random
variables. We assume that the guest is rational enough to minimize a
Bayes’ risk, an expected square-error loss function given joint sufficient
statistics for 2 parameters in obtaining a Bayes’ solution or an optimal
decision function. It will be shown that the Bayes’ solution is nothing
but the mathematical expectations or the mean of optimal decision for
the no data problem studied in Section 2, and it is a weighted average of
a maximum likelihood estimate and the mean of a prior probability den-
sity function of 2 parameters. One may expect the Bayes’ solution con-
verge to the maximum likelihood estimate as the number of trials or the
sample size n goes up, which seems to verify the phenomenon in
Granberg and Brown that across 50 trials, the average of switching in-

creases from 12% to 55%; In Section 4, we provide a conclusion.

0. A NO DATA PROBLEM

To begin with, let us put the host-guest-box-chip game into the fol-
lowing processes in order to find out induced probabilities for the game.
Process 0: Preparation] As a host, a gentleman prepares 3 opaque boxes,

A, B, and C, each of which contains only one chip among 2 gray and
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1 red chips. All 3 chips are identical in shape, size, and so forth but
in color. Let F'be a function for a random variable such that F(X )0
0ifX is a gray chip G and F(X )O 1 ifX is the red chip R.

Process 1: Host’s first move] He asks a guest, who is supposed to be a
lady for convenience’ sake, a game where if she picks out the box
which contains the red chip, then he will give her a nice present such
as a diamond ring; but if not, he gives her nothing.

Process 2: Guest’s first move] The guest chooses a box, say Box A which-
ever she may like according to her first hunch or prior knowledge.
In other words, the choice is made based upon the probabilities
P(A), P.(B), and P.(C) in which A, B, and C is the event that each
box contains the red chip. Let A and a be a random variable for Box
A and its particular realization, then one has a0 0 if Box A contains
a gray chip or A(G)O0 whereas a1 if Box A contains the red
chip or A(R)O 1.

Process 3: Host’s second move] The host reveals that another box, say
Box B contains one of 2 gray chips. Let B and b denote a random
variable for Box B and its particular realization, so that one has 600 0
if Box B contains a gray chip or B(G)O 0 and b0 1 if Box B has the
red chip or B(R)O 1. Therefore, she observes the realization or
datum of b0 0 by the revelation.

Process 4: Guest’s second move] The guest makes another decision of
whether to stick with her original choice Box A or to change it into
the other Box C by thinking of P.(Alb0O 0) and P,(Clb0 0), the condi-
tional probabilities of the events given the gray chip revealed by the

host in Process 3.
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Process 5: Host’s third move] The final result comes out: The host shows
her if Box A or C has contained the red chip, that is, if she can get the
diamond ring or not. This process is missing in both the 3-prisoner
problem and the Monty Hall’s dilemma game. According to Berger
(1985), those games still belong to a no data problem since without
any realization or datum a, she has not yet learnt anything by her
doing of staying with Box A or switching it to win the ring. This
process will be studied in the next section.

Now, we can define a space for the random variables A and B as a
discrete set /\ of 3 pairs of (a, b)’s with their particular realizations:
A = {(a, b0, 0), (1, 0), (0, D},

which reflects that there are 3 possible outcomes of the events that each

box contains the red chip R: That is, (1, 0) represents for the event A that

Box A contains R; (0, 1) stands for the one B that Box B contains R; and

so that (0, 0) means the one C that Box C has R since it must happen if

each of Box A and B contains a gray chip or if alJ bJ 0. Let 6 and p de-
note a population parameter for P.(A) and P.(B), respectively. Then,

P.(C) is expressed as (10 6 0 p) because P.(A) O P(B) O P(C) O1.

Therefore, we can see that A and B jointly have a 3-point or multi-

Bernoulli distribution whose joint probability mass function f(a, b) can

be written as

1 a,b o Nl—a—b
fla, b)q ab! (1 — a— pyr e (1-6-p) if(a, b) € A, "

0 elsewhere,

in which the exclamation mark ! stands for the factorial; 0!0 1!'0 1. Let

E {} be an operator for the mathematical expectations, then we have
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1 —a
EA) =3 Y af(a b)
a=0 b=0

o ab” 1—a (1—a)! by p o Nl—a—b
S AU = e —a— P L0

1

— aiga _ l—a _
752:0 al (1 —a)! Q-0 %

1 1-b
E{B} = Eo go bf(a, b) =p

In a similar manner.

So, the probabilities on the 3 points can be ex-
pressed by
f(1, 0 =P(A) =0=E{A}, (2)
(0, 1) = P(B) =p = E{B}, (3)
70,0 =P(C)=1—0—0p.

Based on the probabilities (assuming they are unknown constants: 00

001,00 pd1;, and 0010 60 p O1), which stand for the guest’s first
hunch or prior knowledge, she is supposed to make her initial choice of
Box A in Process 2].

Since a marginal function of Equation (1) for B, say f,(b) is calcu-
lated as

_ e B pb 1—b (1—0)! R
hb) = E Sla b = By aa e OO

1 )
T (1= b PP—p)t "

(5)
if 600, 1 and f,(b)0O 0 elsewhere, a conditional probability mass function

of A given a particular realization BO b denoted by f(ald) becomes

(10)
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:f(d,b>7 (1—5)! Q“(lfgip)l a—b
Halby= £, (b) a1l —a—b) (17p>1*b*a+a

:‘”él:abz!bn<1fp>a<11€;p>liaib (6)

if a0 0, 10 b and f(alb)O 0 elsewhere. Let both d and u be dummy vari-
ables such that d = a0 1 and u = 10 b, and Equation (6) provides us

with E{Alb}, conditional expectations of A given a realization BO b as

1-b u ul 9 a 1797 u—a
E{Alby= a§0 af(a‘b):ago dl'(u —a)! (1 *,0) ( 1—p p)

6 uZl ulu — 1! 0 d< A S
C1-0p dgo d!(u—d—l)!<l—p> ! 1—,0)

B 0 < 0 0 >“*1
7”1*,0 1704-1 1

]
I1—0p

=(1—-10b) (7)

if 600, 1. After the guest observes Box B has contained a gray chip G or
b0 0, not only Equation (6) but (7) gives her the conditional pro-
babilities given b0 0:

P(AIbO 0)O f(eO 1160 0) O = O E{AlbO0} (8)
P(CbO 0)O f(eO 06O 0) O 10 5 9)
P(BbO 00O 10 P(AIGO 0)O P(ClbO 0) O 0. 10

Consequently, we have the following theorems that can save one’s in-

tuition.

(11)
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Theorem 1. After the host shows Box B has contained a gray chip, not
only P.(A) but also P.(C) increases as long as P.(A), P.(B), and P.(C)
are positive.

Proof: Subtract Equation (2) from Equation (8), and we have

P(AIDO 0)T P(A)= % — 0= 16%10 > 0.

It holds if P(A) =000 and P.(B) = p 00. On the other hand, sub-

tracting Equation (4) from Equation (9) yields

—(I—Q—p)im>

1~ 1~ 0.

P(Clb0O 0)0 P(C)O 10

It is always true if P(B) =p00and P.(C) =10 60 p00. Q. E. D.
Theorem 2: After the host reveals Box B has had a gray chip, the guest
again falls into a dilemma if and only if P.LA) O P.(C).
Proof: =) Set Equation (8) equal to % for the dilemma, and one has
0=1—0—p (1
whose left hand side is nothing but P,(A) and right hand side is P,(C) it-
self. <) Suppose that P,(A) O P.(C) in the beginning of the game. Its
expression in the population is Equation (11). Recall that 00 o O 1, then
0010 p O 1. Divide both sides of Equation (11) by (10 p), and we have

8 — —
P(AIDD 00 7= = 1= 57—

O P(Clo0O 0).

This indifference makes her get into the dilemma. Q. E. D.

Theorem 3. After the host reveals Box B has had a gray chip, a large-
small relation between P.(A) and P.(C) keeps order: That is, if P,(A) O
P.(C), then P.(AlbO0)O P(CIb00); but if P.CA) O P.(C), P(AlbO0)O

P(C1000).

(12)
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Proof: Suppose that P,(A) O P.(C) or 6010 00 p. Dividing both sides

by a positive (10 p) gives us that

0
PRAIBD 0)0 {—— > 1= =0 B(CIb 0 0).
In a similar way, we have
P(AIbT 0)0 <1 % gpwoo
(A0 00 T 0 (b0 0)

if P(A)O P(C) or 6010 00 p. Q. E. D.
Theorem 1 verifies an intuition that Box B is no longer likely for the red
chip’s whereabouts so that the other 2 likelihood or the probabilities
should increase. Theorem 2 verifies an Erdos’ intuition discussed in
Footnote 2 that if the events that each box contains the red chip are
equally likely, then the host’s revelation of the gray chip should make no
difference between the other 2 probabilities. Theorem 3 verifies an intui-
tion that the host’s revelation is not a hint for the red chip’s whereabouts
and the guest has not yet had a particular realization to revise her first
hunch or prior knowledge so that on the second stage she cannot help act-
ing based on what she has believed as her prior knowledge on the first
stage. Let Max {, } denote an operator for the maximum value which
takes the bigger one than the other and let Min {, } be for the minimum
value, then one may think of 4 strategies that she can employ for the be-
lief on the first stage.
Strategy 1: Equally likely; 60 o010 60 p O %.]

It means that the guest chooses Box A because there is no difference

among boxes or she believes that each box equally likely contains the

red chip.

(13)
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Strategy 2: Most favorite; 8 = Max{o, 10 6 O p}.]

The guest chooses Box A frankly because she makes a guess some-
how that this box has the highest possibility to contain the red chip
or she likes this box the most. Thus, she does not switch this box in
Process 4].

Strategy 3: Second favorite; 1) 10 60 p <00 poril)p <6010 60 p.]
This means that the guest chooses the second favorite box for the
first time. Hence, she will switch from Box A to C in Process 4] only
if the most favorite one in her mind is not ridded by the host in
Process 3].

Strategy 4: Least favorite; 8 < Min{o, 10 6 O p}.]

It is kind of perverse: The guest selects Box A in Process 2] even if
she is somehow sure that either of the other 2 boxes contains the red
chip. She always switches Box A to C in Process 4] no matter which
box the host might reveal as a gray chip in Process 3].

Hence, she had better make some difference among 3 boxes (especially,

between Box A and C, and at least shortly) before the host reveals Box

B as a gray chip. Otherwise, she would suffer from the dilemma in

Process 4].

0. A BAYESIAN ANALYSIS

In this section, we repeatedly analyze the host-guest game with
Process 5], in which the host finally shows the guest whether or not she
could successfully pick out the box that has contained the red chip to win

a nice present. Because after this process, one has particular realizations

(14)
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a and b or an element (a, b) in the discrete set A ={(a, 0)I(0, 0), (1, 0),
(0, 1)}, the word “repeatedly” means that the guest is assumed to make
use of a sample with size n and have quasi (or actual) experiences “n
times” from the sample in learning by doing of the staying-switching de-
cision so that she can “repeatedly” revise her prior knowledge one after
another. Recall that P.(A) = 0 and P,(B) = p. To describe her prior
knowledge against the events A, B, and C that each box contains the red
chip or the population parameters 6 and o, we assign a Dirichlet distribu-
tion to her knowledge with positive hyper parameters «, 8, and 7, reflect-
ing degrees of her belief on the events A, B, and C, respectively.® Let D be
a domain set of
D ={(9, p)I 00 0 <10 p O 1},

then its probability density function 7 is expressed as

I' (a+B+7)

7(6, p) =41 T@IT (BT ()
0 elsewhere,

0 1P (1—0—p) " if(6, p) ED "

in which T'() is a 7 function well defined as T'(m) Ef 2" e fdz .
0
Let @ and R be a random variable whose particular realization is 6

and p, respectively. Since we have the mean of @ as

¢ This assignment has 4 advantages: Firstly, a parametric analysis is more
sensitive than a nonparametric one; Secondly, we can describe a lot of dis-
tributions on a region of (0, 1) because there are infinite combinations of
a, B, and 7; Thirdly, we can coherently transmit personal or subjective be-
lief on the events A, B, and C to probabilities as well as moments (if any)
through sufficient statistics for @ and p; Last of all, it is tractable for us to
compute a posterior distribution owing to a same kernel such as o (10 60
0) in Equation (1) and (12).

(15)
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i _ TlatBtr T@+DTETG)
£Q = 0n(0, p)dA0d0 = T S FRT () Tl gry)

the probability of the event A that Box A contains the red chip is given
by

a

P(A) = E{E{A}} = E{Q} :m. (13
In a same manner, we have
_ _ B
P(B) = E{E{B}} = E{R} = PEYETE (14
—1_ _ - r
P(C) =1-E{Q} —E{R} PR (15

They correspond to Equation (2) through (4) in Section 2.

Let S ={(A,, BY), (A2, B),..., (A,, B.))} denote a random sample with
size n from Equation (1). Let X = A0 A.0..0A,and Y = B B0 ...
0 B, be a sum of each A; and each B;, respectively for a running index i
01,2, ..., n. Besides, let s, x, and y be their particular realizations: That
is, s ={(a, b1), (@, b),..., (@, b)}; x = el @0 ...0 ay; and y = 6,0 b,
O ...0 b.. Moreover, define 2 nonnegative functions k: and k.:

k,=0%"(1—0—p)" "V >0; (16)
ky,=1>0.
Furthermore, let II[f] be a function for a product of f’s from Equation
(1), then the product of probabilities of the sample s becomes
Hlf(a;, b)] =6“0"(1 —8 —p)' “ " 9% (1— 8 — p)' “ "
=00 (1—0—p)" " V=Fk Xk, (17)
because each of both a; and b; takes either 0 or 1 for the index 01, 2, ...,

n, and makes all factorials 1: 0!0J 1!00 1. Since we can see that Equation

(16)
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(17) 1s factorized by nonnegative functions k; and k., the sums X and Y
are joint sufficient statistics for @ and p.° We can also see from the kernel
of ki that the sums X and Y have a trinomial distribution with a mass
function g(x, y) of

7

g(z, y) =1 2yn—z—y)!
0 elsewhere,

0" (1—0—p)" ¥ if(z, y) € Ni’(18)

where N is a set of a pair of nonnegative integers such that x and y take
0,1, ..., x0 y < nat most. By the definition of a conditional probability

we have

7(0, o)k,
S (6, p)k,dOdp

70, pls) =

_ 76, p)g(x, y)
S, 0)g(x, y)dodo

=700, olz, v,

which tells us that a posterior density function given joint sufficient sta-
tistics, (6, o lx, y) is similar to the one given the sample, 7(6, p Is) and
that the function is proportionally varying (denoted by o<) to the kernel
in the numerators like
70, pls) o< n(0, p)g(x, y)

<0 N (1—0—p) 01— 0 —p)" T

_ 6a+x—1pﬁ+y—1<1 — 0 _p)wn—z—y—l.
Let & be a constant coefficient such that

I‘(a+ﬁ+7+n)
Tla+)T@B+yYTry+n—z—y)’

E=

* See, for example, Hogg and Craig (1995, p.318 and p.341) about the Neyman'’s
Jfactorization theorem.

(17)
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then not only @IS and RIS but also @IX, Y and RIX, Y have exactly the
same Dirichlet distribution whose posterior density function can be writ-
ten as

é:ea\z 1[0/3>y l(lfg—‘o)y}n oyl lf(g,p) EDa
0 elsewhere.

7(0,0ls) = { (19)

In the Bayesian statistics, all the information is involved in the posterior
density function of Equation (19). In a similar manner to have the prior
mean such as Equation (13), we are able to calculate posterior mean val-
ues for the guest who utilizes the sample data s of (quasi or actual) expe-

riences to make it influenced to her decision:®

a+x

P,(A\§>:E{E{A\§}}:E{Q|§}:m; 20
_ _ Bty

P(Bls) = E(E{BIS)) = ERIS} = == e

P(Cls) =1 E{QIS)— E(R|S) = LR~ T~V 2

a+p+r+n’

Because we have n0 xO yO 0 in any no data problem, the posterior mean
includes its corresponding prior mean. Let 6 be a maximum likelihood es-
timate for 0, then Equation (20) is a weighted average of the prior mean
of Equation (13) and the estimate 0 0 x/n as shown in Appendix, that is,

a+p+r a I n x
at+B+tr+n atpB+ry at+B+trt+tn n

P(Als) =

® See, for example, Hogg and Craig (1995, p.367) about the posterior mean
value, which minimizes a Bayes’ risk of an expected square-error loss func-
tion given a sufficient statistics.

(18)
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__atptr
N a+ﬁ+7+nR<A>+

" g
at+B+tr+tn

It can be seen that the posterior mean P,(Als) converges to the estimate
0 as the sample size n goes up. So does P.(Bls) to the maximum likelihood
estimate y /n, say p for the population parameter o. One may think that
those estimates can be used for a proxy of the host’s strategy about the
red chip’s hideaway as they can tell us at least if the events A, B, and C
are equally likely or not.

Without losing any generality, say that after the guest has observed
the sample s, she picks up Box A as the first choice in Process 2] and the
host shows Box B as a gray chip or b0 0 in Process 3]. Let Vand W be
a random variable whose particular realization v and w respectively sat-

1sfies with

v = and w = p.
0

1 —
Since a Jacobian, J of the transformation: 8 O v(10 w); and o O w is

given by

~00 00 00 0o _ ~ (- -
J=on 2 o S~ (1mw) (D)~ (—0)(0) =1 w >0

and so Equation (19) can be transformed into a function A such that

h(v, wls) = Jz(0, pls) = U—w)r(v(1—w), wls) = z(v|s)n(wls)

where
gvva+z*1(liv)7+"7riyil fo<ov< 1y
_I& 23
z(vls) { 0 elsewhere, )
lsy — BT o< w <y o
S 0 elsewhere,

(19)
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with constant coefficients

Flatyr+n—y)
Ta+z)I'(y+n—xz—y)

and €, = rla+B+y+n)

&= TTBtTatrtn—y)’

not only VIS but WIS independently has a beta distribution whose prob-
ability density function is Equation (23) and Equation (24), respectively.
Therefore, the guest, who has already observed data s, expects that the

conditional probability of the event A given a gray chip or b0 0 should be
_ _ _ _ Q _
P(Alb=0,s)=E{E{Alb=0}|S} =E —R ISt = E{VI]S)

~ [ __atx
710. vr(vls)dv = pPEE—— 2

which i1s a weighted average of a prior mean a/(a07) of V or @/(10 R)

and a maximum likelihood estimate x/(n0 y), say v of v as shown in

Appendix, 1. e.,

a+7r n+y _
atryr+tn—y vy a+7+n—yv

P(Alb=0,s) =
One can see that as the sample size n goes up, Equation (25) converges to
the estimate v no matter how tightly the guest might believe on the
events of the red chip at the very beginning.” On the other hand, we have
y+n—x—uy

atrt+tn—y’ g

P(Clb=0,s)=1—-P(Alb=0,5) =

Consequently, we are able to expand theorems discussed in the last

" This tightness can be expressed by hyper parameters in Equation,(12): The
larger they are, the more tightly the guest believes; Because « O y 0 n O
y holds on the middle point in this case, a convergence to v needs enough
data that satisfies with a 0 y O n 0 y at least.

(20)
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section.

Theorem 1: After the host shows that Box B has contained a gray chip in
the (nO 1)th game, P.(Als) as well as P,(Cls) increase.

Proof: Subtract Equation (20) from Equation (25), and we have

(a+2)B+y)
(atry+n—yla+B+r+tn)

P(Alb=0,s)—P(Als) =

In the meantime, subtracting Fquation (22) from Equation (26) yields

tn—ax—ywB+y =0

PACIo =0, )= P(Cle) = TSt 0,

Recall that all the hyper parameters are positive. Q. E. D.

Theorem 2: After the host reveals Box B has had a gray chip in the

(nO 1)th game, the guest again falls into a dilemma if and only if P, (A

)0 PACls).

Proof: =) Equalize Equation (25) to % for the dilemma, and one has
aOx0 yOnOx0 v. 4]

Divide both sides of Equation (27) by a positive (¢ O 80 7y On), and one

has Equation (20) on the left as well as Equation (22) on the right.

<) Suppose that P.(Als)0 F,(Cls) at the outset of the game. As its com-

mon denominator of (¢ O B0 70 n) is positive, one has Equation (27).

So, divide both sides of Equation (27) by a positive (¢ O 7y O nl y) this

time, and one has Equation (25) on the left and Equation (26) on the

right. Q. E. D.

Theorem 3: After the host reveals Box B has had a gray chip in the

(nO 1)th game, a large-small relation between P,(Als) and P,(Cls) keeps

order: That is, if B,(Als)O P.(Cls), then P,(AlbO 0, s)O P.(CIbO 0O, s), but

if P(Als)O P(Cls), then P(AIbO0, s)O P(CIb00, s).

(21)
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Proof: Suppose that P,(Als)0 P.(Cls). Since (¢ O B0 7 O n) is positive,
one hasa 0 x0O y O nO xO y. Divide its both sides by (¢ O v O n0 y), and
one has Equation (25) on the left and Equation (26) on the right. On the
other hand, if P,(Als)0 P,(Cls), one has a Ox 0 y O nO x0 y. Divide it
by (¢ O O nO ), and one has B,(AIb0 0, )0 P(CIb0 0, s). Q. E. D.
The Bayes’ solution, derived from a modern analysis with a Bayes’ risk
of an expected square-error loss function, does not seem to go counter to
one’s intuition: Theorem 1 makes an appeal to the intuition that Box B is
no longer a candidate for the red chip’s whereabouts so that the other 2
probabilities should increase after the host’s revelation of a gray chip;
Theorem 2 appeals to the intuition that if the events that each box con-
tains the red chip are truly equally likely, then the host’s revelation of
the gray chip should not make any different probabilities between the
other 2 boxes left; Theorem 3 verifies the intuition that the host’s revela-
tion of the chip cannot be either the hint for the red one’s whereabouts
nor the advantage for the guest to revise her first hunch or prior knowl-
edge, and she has not yet had another particular realization a so that on
the second stage, she should act just according to what she has believed
as her prior knowledge on the first stage. As discussed in Section 2, on
the first stage she can employ one of 4 strategies based upon her belief to
the knowledge. One may replace 6 and p by Equation (20) and (21), re-
spectively, or possibly by the maximum likelihood estimates 0 and p, re-
spectively because it has been shown that Equation (20) and (21) con-
verges to it as the sample size n increases. Recall that 6 = x/n and p =
y /n. Let us write down the 4 strategies with those estimates.

Strategy 1: Truly equally likely; 90 p010 60 00 % N

(22)
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The guest chooses Box A because there is no difference among boxes.
She falls into the dilemma on the second stage or in Process 4].

Strategy 2: Most likely; 6 > Max{o, 10 60 p}.]

The guest chooses Box A because this box has had the highest possi-
bility to contain the red chip, so that she does not switch this box in
Process 4].

Strategy 3: More likely; 1) 10 00p<00pori)p<0<1—0-—p]
The guest chooses Box A as the second best. She switches it unless the
host gets rid the most favorite box in her mind of the other 2 boxes.

Strategy 4: Least likely; o< Min{p, 10 00 o1
The guest chooses Box A even if she is sure that another box con-
tains the red chip. So, she switches it no matter which box the host
might reveal.

The strategies 2, 3, and 4 tell us that on the second stage, the guest even-

tually picks up the most likely box of the two remaining, which might

contain the red chip. Suppose, for example, one observed a sample with
size nJ 4,500 in which Box A contained the red chip 1,500 times but Box,

B had 1t 1,200 times, then one has 00 1,500/4,50000 % whereas p

(0 1,200/4,50000 % In this example, she has taken Strategy 3 and so she

will switch Box A to C, whose estimate is given by % (010 % O 1%).

Needless to add, one is able to compute the exact solutions by Equation

(20) through (22) with hyper parameters such asa 0 S0 y 01 to the

Laplace’s insufficient reason.

(23)



— 140 —

0O . CONCLUDING REMARKS

In this paper, we have studied the host-guest game such as the
Monty Hall dilemma and considered it as so-called the Bayesian statistics
problem where any prior knowledge to a trial is treated as a random vari-
able rather than merely as an unknown constant. Because there are 3
possible outcomes of winning a nice present, the game relates to a 3-point
distribution with 2 population parameters of the guest’s personal or sub-
jective probabilities of winning the present. Since they depend upon the
guest’s prior knowledge or (quasi or actual) experiential values of ran-
dom variables, we have assigned a Dirichlet distribution to them.

Owing to the tractability of a conjugate family as stated in Footnote
4, 1t has been shown that a Bayes’ solution is the mean of a posterior
(Dirichlet or beta) distribution given joint sufficient statistics of 2 popula-
tion parameters. Because the Bayes’ solution is a weighted average of a
maximum likelithood estimate and the mean of a prior distribution, it goes
to the estimate as the number of trials or a sample size n goes up. If the
events A, B, and C that each box contains the winning present (red chip)
are equally likely to a sample s with sufficiently large size n, then the mean
of the posterior Dirichlet distribution or the probability of the event given
s such as P.(Als) will converge to % And if so equally likely, the mean of
the posterior beta distribution or the probability of the event given the h
ost’s revelation and s such as P,(Alb0 0, s) will not go to % but to %

The Bayes’ solution with the convergence to % wipes off one’s dis-
grace like Ph. D.’s (Still, Sachs, and Bobo) in Tierney (1991) and Erdds in

Hoffman (1998) because the solution, which is the unique unbiased

(24)
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minimum variance estimator, does not run counter to one’s intuition as
seen in the paper: It makes an appeal to the intuition that the choice re-
vealed by the host is no longer a candidate for the present’s whereabouts
so that the other probabilities should increase after it; It also appeals to
the intuition that the host’s revelation should make no difference between
the other choices left if the events are equally likely; It verifies the intui-
tion that the revelation should be neither a clue for the present’s where-
abouts nor an advantage for the guest to revise her first hunch or prior
knowledge.

On the second stage, therefore, the guest had better act based upon
what she has believed on the first stage. There are 4 strategies that she
can employ for the host-guest game. Even if it is still open to question
which strategy is the best for her, it does not matter so much to answer
it when she is always allowed to switch because on the second stage with
the allowance, she eventually picks up the most likely choice of the two
remaining, which may contain the winning present. A selection averse to

the optimal estimator may be an interesting topic for a future research.
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APPENDIX

This appendix provides a few maximum likelihood estimators of 8, p, and v=
6/(10 p). Let (Ai, B, (Az, B), ..., (A,, B)) denote a sample with size n from
the following equation or Equation (1) of
S S
fla, b) =1 alb!(l —a — b)!
0 elsewhere,
where /A = {(a, b)I(0, 0), (1, 0), (0, 1)}. Since the probability that the sample
has taken realizations of (ai, b.), (@, b.), ..., (a,, b.) is computed by a product
of flay, by), f(a, b.), ..., f(a,, b)) or Equation (16) of
kO 001 —0—p)" "
where x = .0 .0 ...0 a,and y = b0 b0 ...0 b, we have a natural logarith-

0%"(1—0—p)" " if (q, b) E A,

mic likelihood function of
In A0 xIn 00 ylnp O (nO x0 y)In(10 60 O p).
After taking partial derivatives with respect to 0 as well as p, set them equal to

(26)
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0, and we have a necessary condition of

Olnk, «x n—x -y _

Oand 20k _ Yy nmn-zx—y
00 0 1—60—»p 0o 0 1—60—»o0
or a system of simultaneous equations with respect to @ and p as
n—z—yo0=z(1—-0—p)and (n—zxz—ypo =yl —0 —p).
Therefore, we have the maximum likelihood estimators for 0 and p denoted by

0

0 and p, respectively as follows:
_ " _ "
ezizzz—laz;andpzizzz—l i
n n n n
since its sufficient condition holds due to second partial derivatives of In k&, with

respect to @ and p as

0’Ink, a n—a—f
e A .
00° 00 (A—-0-p)F 0.
0’lnk, dnk,  n—a—A
0000 8000 (1-0-p)""
8°Ink, 8 n—a—§
- - _ £ = = F_ <
ap? pl (179710)2 0,
and due to a positive Hessian denoted by |l as
_ 0Ink, 9*lnk,  8°Ink, 8’Ink, _ n’
|| = z 7 === ——— >0
06 0o 0600  0pdb Op(1—0—p)

In a similar manner, let (A:;, B.), (42, B.),..., (A., B.) be the sample from
FEquation (6) or
(1-0)!
fab)y= 1 al(l —a— b)!

0 elsewhere,

(1 — )t et ifa=0 1-b;

in which v = 6 /(10 p). Because the probability ks that the sample has had re-
alizations of (ai, b)), (@, b2), ..., (a, b.) is calculated by a joint probability mass
function or a product of f(alby), f(alb.), ..., f(alb)), that is,
ks =0v"(1 — )" 7Y,
we have another natural logarithmic likelihood function In %; as
Inks=zlnv+n—x—yIn(l —v).
Since necessary and sufficient conditions for the maximization are obtained by

dink, :ﬁfnixiy:Oandso(n*x*y)v:x(lfv),
dv v 1—vw

(27)
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d’Ink, r n—r—y
UZEE A s )
v’ v* (1—v)*
we have the maximum likelihood estimator v for v as
ST 20 a X' ya/n 0

n—y n—>2'_ b B (n—>7_,b)/n  1—p°
Recall that 0 = P.(A) and p = P.(B), and consider the following examples:
Suppose that one observed a sample with size nJ 1 that not only Box A but also
Box B has not contained the red chip, then one has 6 0 0/10 0,0 0 0/10 0, and
v 0 0/(10 0)O 0; Suppose that one observed a sample with size nd 50 that Box
A contained the red chip 16 times but Box B had it 18 times, then one has 0
[0 16/500 8/25, p 0 18/5000 9/25, and v 0 16/(500 18)0 1/2; Suppose that
one observed a sample with size nlJ 4,500 that Box A contained the red chip
1,500 times but Box B had it 1,200 times, then one has 00 1,500/4,5000 1/3,
o0 [0 1,200/4,5000 4/15, and v 0 1,500/(4, 5000 1,200)0 5/11; Tt can be seen
that 6 O (n/3)/n0 1/3, 0 O (n/3)/n0 1/3, and
x n/3 n/3 1

U:n—y:n—n/3:2n/3:?

n

3 is actually met.

as long as those events are equally likely or that xO yO

(28)



