1	Title: Characteristic of slow growth in cell culture of adenovirus type 54 causing
2	nationwide outbreak epidemic keratoconjunctivitis in Japan
3	Running Title: Slow propagation of adenovirus 54
4	Tomoko Tsukahara-Kawamura ^{1,2)} , Nozomu Hanaoka ²⁾ , Masami Konagaya ²⁾ , Eiichi Uchio ¹⁾ *,
5	Tsuguto Fujimoto ²⁾
6	¹⁾ Department of Ophthalmology, Fukuoka University School of Medicine, 7-45-1 Nanakuma,
7	Jonan-ku, Fukuoka 814-0180, Japan
8	²⁾ Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 1-23-1
9	Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
10	*Corresponding author: Eiichi Uchio, M.D., PhD.
11	Department of Ophthalmology, Fukuoka University School of Medicine, 7-45-1 Nanakuma,
12	Jonan-ku, Fukuoka 814-0180, Japan,
13	Tel +81 92 801 1011
14	Fax +81 92 865 4445
15	E-mail: euchio@fukuoka-u.ac.jp
16	Abstract
17	Purpose: To characterize the virological features of adenovirus type 54 (Ad54) causing
18	nationwide outbreak of severe epidemic keratoconjunctivitis (EKC) in Japan, we

19	comparatively analysed the viral propagation phenotype of Ad54 and other Ads: Ad type 37
20	(Ad37), 64 (Ad64), and 5 (Ad5), in A549 cells quantitatively.
21	Study Design: Laboratory investigation
22	Methods: We compared the growth rate of Ads using copy numbers and cytopathic effect
23	observation during propagation in A549 cell lines. Expressions of mRNA of E1 gene were
24	also calculated and compared. Phylogenetic analysis of the region, including putative
25	promoter of E1 gene and E1 open reading frame (ORF), were performed.
26	Results: Increases in viral loads, growth rate, and viral propagation were slower for Ad54
27	than for other Ads. The expression level of the E1 gene per infected cell was lower for Ad54
28	than for other Ad types on post-infection day 1. Phylogenetic analysis of the E1 gene putative
29	promoter and ORF revealed Ad54 was the closest to Ad type 8.
30	Conclusion: The propagation of Ad54 in A549 is slow compared with Ad37, Ad64 and Ad5.
31	Slow propagation could have been caused by slow genomic replication resulting from
32	delayed viral entry or E1 transcription initiation. The EKC caused by Ad54 needs more
33	attention because the slow propagation of Ad54 may contribute to prolonged disease
34	duration.

Keywords: adenovirus, epidemic keratoconjunctivitis, species D, type 54, slow propagation.

37 Introduction

38	Human mastadenovirus (Ad) is a DNA virus that infects various organs throughout the body
39	[1]. Ad has a linear, double stranded DNA genome, approximately 35 kb in size [2]. Over 100
40	types of Ad, including serotypes and genotypes, are known (http://hadvwg.gmu.edu/), and
41	they belong to seven species (Ad A to G) [2].
42	Among them, several members of Ad D species: Ad type 8 (Ad8), 37 (Ad37), 54
43	(Ad54), and 64 (formerly known as 19a) (Ad64) are responsible primarily for causing
44	epidemic keratoconjunctivitis (EKC). The ocular manifestations caused by the member of Ad
45	D viruses are more severe than those caused by Ad B (Ad type 3, 7), C: Ad type 2, 5(Ad5),
46	and E: (Ad type 4), which cause mild follicular conjunctivitis and pharyngoconjunctival fever
47	[3]. Thus, typing Ad isolated from eye samples can predict the clinical course of the
48	subsequent infection.
49	Recently, a number of recombinant Ad types have been identified and reported [4-
50	7], including Ad54, first reported as an Ad8 mutant in 2008 [8]. From 2015 to 2018, Ad54
51	caused nationwide outbreak and was the most frequently detected Ad type in eyes of patients
52	with EKC in Japan (https://nesid4g.mhlw.go.jp/Byogentai/Pdf/data41j.pdf), furthermore,
53	this type was found only in Japan until 2017 [9]. Globally, Ad8 is the main pathogen of EKC,
54	whereas in Japan its detection has declined [10], where Ad54 has become the primary EKC
55	type. No other viruses detected in patients with severe EKC have exhibited a detection rate as

56	high as that of Ad54 for 4 years consistently. Motivated by this epidemiological observation,
57	we investigated the viral characteristics of Ad54.
58	Species D reportedly exhibits slower reductions in the viral genome after infection [3]
59	and the high viral loads of Ad54 in clinical samples were reported as maintained over a long
60	period of time following disease onset [11]. As a feature of virus isolation from clinical
61	samples, Akiyoshi, et al. [12], Nakamura, et al. [13], and Kaneko, et al. [14] report that Ad54
62	detection is difficult and time-consuming. However, these three reports used only clinical
63	samples which contained viral loads variously for virus isolation, while quantitative
64	experiments could not be performed. Therefore, we conducted the quantitative analysis to
65	make the same amount of viruses to inoculate in A549 cells and attempted to elucidate the
66	reason for the difficulty of virus isolation with Ad54 compared with those of Ad37 and Ad64,
67	the major forms of EKC in Japan, and used Ad5 as control.
68	
69	Materials and methods
70	
71	Viral strain and cell lines
72	

_ .

Prototype strains of Ad5 and Ad37 were obtained from the American Type Culture Collection 73

(ATCC) (Manassas). Ad54 and Ad64, as reported previously, were obtained from the 74

75	Adenovirus Reference Center (the National Institute of Infectious Diseases; NIID) [15, 16].
76	The strains were grown in A549 cells (CCL-185, ATCC) with Minimum Essential Medium
77	Eagle with Earle's salts (Eagle's MEM, Sigma-Aldrich Japan) supplemented with 5% fetal
78	bovine serum (Biowest), 1% L-Alanine/L-Glutamine (200 mmol/L) (Wako Pure Chemical
79	Industries (Wako)), 0.2% gentamicin sulfate solution (50 mg/ml) (Wako), and 0.1%
80	amphotericin B (Wako) in 25 cm ² tissue culture flask (TPP. After a 100% cytopathic effects
81	(CPE) was detected and subjected to two freeze-thaw cycles, the cells with medium were
82	collected in a 15 mL conical centrifuge tube. The tube was centrifuged at 1,500 \times g for two
83	minutes. The supernatant was collected in a new conical centrifuge tube, and 5% fetal bovine
84	serum was added to make a total volume of 10 ml. Each 500 μ l of the supernatant was stored
85	as viral stock at -80°C. All experiments described here were performed at NIID, an approved
86	facility equipped for experiments with viral infections. This study was not subject to ethical
87	review because it did not use clinical specimens or patient information.
88	
89	Observation of CPE
90	
91	A total of 50 μL of virus, containing 1.0×10^5 copies/ μL , was inoculated into 24 wells of
92	confluent A549 cell monolayers. The inoculated cells were maintained in 450 μL of 5%
93	Eagle's MEM and incubated under an atmosphere of 5% CO ₂ (ASTEC CO. Ltd.). We added

94	500 μ L of 5% Eagle's MEM to the control wells. The cultures were daily observed over
95	seven days for the appearance of CPE. Each time the cells were observed, we took
96	photographs using a phase-contrast microscope (Wraymer) to examine for CPE. Each
97	experimental condition was analyzed using three wells.
98	
99	Measurement of the number of adenoviral genome copies
100	After the virus was harvested, we collected cell pellets and supernatant from each well at 6 h,
101	1, 2, 3, 4, 5, 6, and 7 days post-infection (dpi) (Fig. 1). First, 250 μ L of the culture
102	supernatant was sucked by a pipette into a 1.5-mL micro-centrifuge tube "A." Tube A was
103	centrifuged at 1,500×g for 5 minutes, and then 200 μ L supernatant was collected into a new
104	1.5 mL micro-centrifuge tube "B." The cells that remained in the well were carefully scraped
105	with a cell scraper (TPP) and collected into tube A. We poured 500 μ L D-PBS (Wako) into
106	the same well to wash the scraper and well, and then the wash solution was collected in tube
107	A. Tube A was centrifuged at 1500×g for 5 minutes, and the supernatant was discarded. Tube
108	A was preserved as a pellet tube and tube B as a supernatant tube at -80° C until DNA
109	extraction.
110	Before DNA extraction, tube A pellets were mixed well by vortexing with 200 μL D-
111	PBS. Tube B contents were used without any further processing. Viral DNA was extracted
112	from 200 μ L of each sample using the High Pure Viral Nucleic Acid Kit (Roche). We stored

113	the extracted 100 μ L of viral DNA at -80°C until PCR. The number of adenoviral genome
114	copies per microliter of pellets was determined using quantitative real-time PCR (qPCR)
115	following a previously described method [14] and the pharyngoconjunctival fever/EKC
116	Diagnostic Manual, 3rd Edition (National Institute of Infectious Diseases,
117	https://www.niid.go.jp/niid/images/lab-manual/adeno_v3.pdf). Briefly, 2 µL of template DNA
118	was added to 18 μ L in total containing 10 μ L of 2× SYBR Premix Ex <i>Taq</i> II (Takara bio), 0.4
119	μ L of 50 × Rox Reference dye II (Takara bio), 0.16 μ L of 50 μ M concentration of the primers
120	Hex 3 and Hex 4 (Supplemental Table), and 7.28 μL of DW. Real-time PCR was performed
121	using the StepOne real-time PCR system (ABI) (StepOne). The cycling conditions included
122	an initial denaturation step at 95°C for 1 min, followed by 40 cycles of denaturation at 95°C
123	for 5 s, annealing, and extending at 60°C for 30 s. All experiments were repeated three times.
124	
125	Virus titration
126	
127	Ad virus titers were determined using micro titer plates by three-fold serial dilution of viral
128	stock and inoculation with 100 μ L of dilution into each of the 96 wells (TPP) containing a
129	monolayer of A549 cells. Plates were incubated at 34°C with 5% CO_2 and observed daily for
130	CPE for seven days. The Spearman-Karber's method was used to calculate the median tissue
131	culture infective dose (TCID ₅₀)/ml [17]. All tests were repeated three times.

133 Calculation of Ads growth rate

135	To compare the speed of viral propagation, growth rate was defined as the intracellular
136	genomic gain of Ad, considered to represent genomic replication in the A549 cells before
137	viral shedding into culture supernatant. The time point just before the virus was released into
138	the supernatant was determined, and then, a straight line was drawn between two additional
139	points: (1) the viral load at that point and (2) the viral load in pellets at 6 h. Specifically, we
140	extracted viral loads in pellets at 6 h and 2 dpi for Ad5, 37, and 64 (Fig. 3A). For Ad54, viral
141	loads in pellets were extracted at 6 h and on 3 dpi. Growth rate was calculated from the slope
142	of the straight line as per the previous study [18]: Growth rate = $\Delta \log \text{ viral load} / \Delta \text{ time}$.
143	Statistical analyses $(n = 3)$ were performed using one-way analysis of variance (ANOVA)
144	followed by Tukey-Kramer post hoc test using Microsoft Excel 2011 (Microsoft) and
145	Statcel4 add-in software (OMS). A p-value <0.05 was considered statistically significant.
146	
147	The expression levels of early transcription factor E1 gene per infected cell
148	
149	To synthesize cDNA, PrimeScript RT reagent Kit and gDNA Eraser Kit (Takara bio) were
150	used for reverse transcriptions of mRNA and removal of genomic DNA (gDNA). Briefly, 7

151	μL of total viral DNA from pellets, 2 μL of 5 \times gDNA eraser buffer, and 1 μL of gDNA
152	Eraser were mixed to form a total reaction volume of 10 μ L. This solution was incubated at
153	42°C for 2 min to eliminate the gDNA. Ten microliters of reverse-transcription reaction
154	mixture, 4 μL of 5 \times PrimeScript Buffer 2, 1 μL of PrimeScript RT Enzyme Mix 1, 1 μL of
155	Oligo dT Primer (50uM) (Takara bio), and 4 μL of RNase Free dH2O were combined and
156	incubated at 37°C for 15 min, followed by 85°C for 5 s, to generate cDNA using a PCR
157	Thermal Cycler Dice (Takara bio). Eighty microliters of TE (pH 8.0) (Wako) were added to
158	cDNA to make a total volume of 100 μ L, stored at –20°C until use. The qPCR was performed
159	using a StepOne and SYBR Premix Ex Taq II (Takara bio). Thermocycling was performed in
160	a final volume of 20 μL containing 2 μL of the cDNA sample, 10 μL of 2 \times SYBR Premix Ex
161	Taq II, 0.4 μ L of 50 × Rox Reference dye II, and 0.8 μ L of 10 μ M concentration of the each
162	E1 primer (forward and reverse), and 6 μ L of distilled water. The E1 primers for qPCR were
163	designed by Primer Express Software v2.0 (ABI). All primers were checked for amplification
164	efficiency, and only primers with equal amplification efficiencies were used in the
165	experiments. PCR amplification was performed using a StepOne, and the cycling conditions
166	were 95°C for 1 min and 40 cycles of 95°C for 5 s and 60°C for 30 s. To account for the
167	number of infected cells per well, the RNase P gene (one copy of which is present in human
168	genomic DNA) was quantified using the ABI TaqMan RNase P Detection Reagents Kit
169	(Thermo Fisher Scientific) and Probe qPCR Mix (Takara bio) on a StepOne. Reactions were

170	prepared using 10 μL of Probe qPCR Mix, 1 μL of 20 \times RNase P Primer-Probe, 0.4 μL of
171	Rox reference dye, 2 μ L of viral DNA of pellets, and 6.6 μ L of distilled water. Cycling
172	conditions were 95°C for 20 s and 40 cycles of 95°C for 1 s and 60°C for 20 s. A series of 2
173	serial dilutions of human genomic DNA containing the Kit was used in duplicate to produce
174	the standard curve. The expression levels of E1 gene per infected cell were calculated
175	according to the formula $2^{-(Ct)}$ / the number of cells, which were calculated from RNase P.
176	Each experimental condition was analyzed in three wells and repeated three times. Statistical
177	analyses were performed using ANOVA followed by Tukey-Kramer post hoc test using
178	Microsoft Excel 2011 with Statcel4 add-in software. A p-value of <0.05 was considered
179	statistically significant.
180	
181	Phylogenetic analysis of the region including promoter of E1 gene and E1 open reading
182	frame (ORF)
183	
184	To investigate growth rate delays and E1 expression in Ad54, we compared the E1 upstream
185	sequence, including putative E1 promoter and regulator, and ORF of E1 in Ad related to EKC
186	and Ad5. The genome sequences of Ad5 (AY339865.1), Ad37 (AB448775.1), Ad54
187	(AB333801.2), Ad64 (JQ326307.1), Ad type 8 (Ad8: AB448767.1), and Ad type 56 (Ad56:
188	HM770721.2) were obtained from a public database (GenBank: https:

189	//www.ncbi.nlm.nih.gov/nuccore.). The multiple alignments and phylogenetic tree analysis
190	were performed using MEGA 6.0 software (https://www.megasoftware.net/). DNA sequences
191	were aligned using the ClustalW program (http://www.ebi.ac.uk/clustalw/) with an open gap
192	penalty of 15, a gap extension penalty of 6.66, a transition weight of 0.5 with IUB DNA
193	weight matrix, and a delay divergent cutoff of 30%. The neighbor-joining method was used
194	for phylogenetic tree analysis, the reliability of which was assessed by bootstrap resampling
195	(1,000 pseudo-replicates). Kimura's 2-parameter method was used to calculate genetic
196	distance [19].
197	
198	Results
199	
200	Viral replication comparisons
201	
202	CPE
203	Fig. 2 depicts CPE induced by Ads. Each of the A549 cells infected with Ad5, 37, and 64
204	became enlarged, rounded, and were highly refractile on the third dpi. By 4 dpi, they
205	aggregated into irregular clusters on the well plate bottoms (Fig. 2). A day later, all the cells
206	dispersed from the well plate bottoms and were observed floating in the culture medium. The
207	Ad54 infected cells began to swell on 4 dpi, and clear CPE was confirmed on 5 dpi. Ad5, 37,

and 64 cells all floated within 24 h, and Ad54 floated within 48 h. Compared to the other
types, Ad54 required more dpi (time) for confirmation of CPE. No CPE was observed in the
negative control.

211 Comparisons of viral loads of Ad genomic DNAs and TCID₅₀

- 212 We separately compared the viral loads of Ad genomic DNAs in pellets of A549 cells and
- supernatant. On 1 dpi, Ad5, 37, and 64 copies increased in the pellets by ~100-fold. The viral
- 214 copies of these three Ads reached ~10,000-fold (maximum) from initial viral loads within 3
- dpi (Fig. 3A). On 2 dpi, Ad5, 37, and 64 exhibited viral shedding into the culture supernatant

216 (Fig. 3B). On 2 dpi, the Ad54 viral load in cultured cells reached was ~100-fold of

- 217 inoculation levels and reached ~10,000-fold of inoculation levels on 6 dpi; however, the
- 218 levels failed to plateau (maximum) within 7 days. Clear virus shedding into the supernatant
- 219 was observed on 3 dpi. Compared to the cells infected with other Ads, the viral loading of
- Ad54 was slower both in the pellets and in supernatant. Table 1 shows the relationships
- between the viral loads of Ad genomic DNA and TCID₅₀. TCID₅₀ had the lowest viral loads
- in Ad54.
- 223 Comparison of Ad growth

Intracellular genomic gains occurred on 2 dpi for Ad5, 37, and 64 and on 3 dpi for Ad54 (Fig.
3B). The growth rates displayed in Table 2 were calculated using the formula shown in the
Methods section. Significant changes in growth rate were observed between Ad54 and the

227	other D types ($p < 0.01$). No significant differences were found between Ad37 and Ad64. The
228	growth rate of Ad54 was significantly lower than those of other types.
229	
230	Confirmation of E1 gene expression (Fig. 4)
231	
232	Relative expression levels of the Ad54 E1 gene were significantly lower than cells infected
233	with other Ads on 1 dpi and gradually increased on 2 dpi and 3 dpi.
234	
235	Phylogenetic analysis of the E1 gene putative promoter and ORF
236	
237	DNA sequences of types Ad37 and 64 were phylogenetically closest for both the putative
238	promoter and ORF of the E1 gene. Ad54 was the closest to Ad8. Ad5 was the
239	phylogenetically farthest from Ad54 (Figs. 5A, B).
240	
241	Discussion
242	There are no comparative reports with accurate quantification on the propagation of Ad54,
243	therefore, we compared the phenotypic proliferative properties of Ad37, 54, and 64, which
244	are the major causes of EKC in Japan. Although Ad8 is a major EKC pathogen globally, it
245	was not included except for the phylogenetic analysis. This was because: (1) the prototype

246	strain of Ad8 provided by ATCC was contaminated with Ad type 10 [20] and (2) Ad8 strains
247	may have differences in their propagation speeds among strains [21-23]. The hypothesis
248	about Ad8 strains should be clarified in another paper. To date, no differences in viral
249	propagation among strains, such as Ad8, have been observed in Ad54. A549 was used as the
250	most sensitive cells to isolate Ads, including Ad54 [12, 24, 25]. We inoculated the same
251	amount of each Ad virus at the beginning and separately compared Ad viral loads in pellets
252	with supernatant, the latter was assumed to contain the complete Ad virions [26].
253	Our results produced five major characteristics of Ad54. First, the initiation of CPE
254	and the time required until all the cells show CPE in Ad54 were delayed compared with other
255	Ads (Fig. 2). Second, viral load in pellets and viral shedding in supernatant were slower for
256	Ad54 than for the other types (Figs. 3 a, b, c). Third, the growth rate of Ad54, indicated by
257	intracellular genomic gain, was significantly slower than the other types (Table 2). Fourth, the
258	relationship between Ad54 genomic DNA viral loads and $TCID_{50}$ was the lowest among the
259	tested types (Table 1). Last, Ad54 was the lowest level on 1 dpi, according to the expression
260	level of the E1 gene per infected cell, which acts as an indirect measure of viral entry (Fig. 4).
261	Slower viral propagation of Ad54 could be (at least partly) due to slow E1
262	expression or slowing of the steps that precede E1 expression. In other words, Ad54 could
263	experience defects during any of the early steps of viral replication: virus adsorption, entry, or
264	E1 gene initiation [27]. Because we detected approximately 10 ⁵ copies/well of Ad54 DNA

265	from the pellet at 6 h after infection, the virus may have been able to adsorb to the host cells.
266	Notably, there was some lag between viral entry and E1 gene transcription initiation in Ad54.
267	We were unable to prove the existence of any defects in viral entry of Ad54. However,
268	assuming no viral entry issues, the delayed E1 gene transcription initiation might have
269	resulted from an E1 gene putative promoter or the ORF of the E1 gene itself.
270	E1 gene expression is directly linked to the growth rate. Therefore, we investigated
271	phylogenetic differences among the Ad viruses for E1 gene promotion. Four complete
272	sequences of Ad54 (AB333801, LC215446, LC215427, and LC215423) were obtained from
273	the NCBI database. The upstream region of E1 and E1 ORF were identical among the strains.
274	The putative promoter and ORF of the Ad54 E1 gene were phylogenetically closest to Ad8
275	(Fig. 5). Ad54 is considered phylogenetically derived from Ad8 [28, 29]. We could not
276	investigate Ad8 in this study; however, the growth rate of Ad8 may be slow [21, 23]. This
277	prediction is consistent with the results of previous reports, in which Ad8 could not be
278	isolated from clinical samples [13, 14].
279	Our results indicate that the slow propagation of Ad54 could have been caused by
280	slow genomic replication resulting from delayed viral entry or E1 transcription initiation that
281	induced an overall delay in genome replication. Slow propagation might be the reason owing
282	to which the viral load did not peak within 7dpi for Ad54.

283	Because viral replication in Ad54 was delayed, the latent period may be longer than
284	the typical 8–10 days [30]. Additionally, slow propagation of Ad54 might have prolonged the
285	duration of infection. Furthermore, species D reportedly exhibits slower reductions in the
286	viral genome after infection [2]. Therefore, Ad54 appeared to take long from latency to
287	termination of infection than the other types. Extended duration of the disease can lead to an
288	increase in the chance of infecting others, likely spreading the infection. There is currently no
289	effective treatment for EKC, and when nosocomial infections or a major epidemic occur, the
290	resultant social and economic losses can be substantial [31, 32].
291	Limitation of this study: we used only A549 cells, believed to be the most sensitive
292	cell line for Ads. To verify whether these experimental results can be applied to conjunctival
293	epithelial cells in vitro and in vivo, additional quantitative experiments are required in the
294	future. The experiment for the viral propagation should be performed in the near future for
295	other EKC types of Ad, including prototype Ad8 and recent isolates, such as Ad8, Ad53,
296	Ad56, etc. Because expression level analysis and cell observation imaging were not
297	conducted by sorting only infected cells, the correlation between the expression level of E1
298	and CPE after the virus entered the cell could not be proved in this study. Infection
299	experiments after cell synchronization will be necessary in the future.
300	The slower propagation of Ad54 compared to the other Ads was confirmed kinetically
301	in this study. The results of this study might provide clues to the development of specialized

302	countermeasures for each Ad type. Ads are highly contagious and considering that high viral
303	loads are maintained at infection onset [11], more attention is required to prevent the spread
304	of Ad54.

305	Acknowledgements The authors would like to thank Enago (www.enago.jp) for the
306	English language review. This study was partly supported by a Ministry of Health, Labor and
307	Welfare Grant-in-Aid for Scientific Research (10110713). This is a post-peer-review, pre-
308	copyedit version of an article published in Japanese Journal of Ophthalmology. The final
309	authenticated version is available online at: https://doi.org/10.1007/s10384-020-00727-2.
310	Conflicts of interest T. Tsukahara-Kawamura, None; N. Hanaoka, None; T. Fujimoto, None;
311	M. Konagaya, None; E. Uchio, None.
312	
313	References
314	1. White DO, Fenner FJ. Adenoviridae. In: Medical Virology. 4th ed. San Diego: Academic
315	Press; 1994. pp. 306–16.

2. Robinson CM, Singh G, Lee JY, Dehghan S, Rajaiya J, Liu EB, et al. Molecular evolution

317 of human adenoviruses. Sci Rep. 2013;3:1812.

318 3. Lee CS, Lee AY, Akileswaran L, Stroman D, Najafi-Tago K, Kleiboeker S, et al.

319 Determinants of outcomes of adenoviral keratoconjunctivitis. Ophthalmology.

320 2018;125:1344-53.

321	4.	Walsh MP, Chintakuntlawar A, Robinson CM, Madisch I, Harrach B, Hudson NR, et al.
322		Evidence of molecular evolution driven by recombination events influencing tropism in a
323		novel human adenovirus that causes epidemic keratoconjunctivitis. PLoS One.
324		2009;4:e5635.
325	5.	Hashimoto S, Gonzalez G, Harada S, Oosako H, Hanaoka N, Hinokuma R, et al.
326		Recombinant type Human mastadenovirus D85 associated with epidemic
327		keratoconjunctivitis since 2015 in Japan. J Med Virol. 2018;90:881-9.
328	6.	Espínola EE, Barrios JC, Russomando G, Mirazo S, Arbiza J. Computational analysis of a
329		species D human adenovirus provides evidence of a novel virus. J Gen Virol.
330		2017;98:2810-20.
331	7.	Kaján GL, Kajon AE, Pinto AC, Bartha D, Arnberg N. The complete genome sequence of
332		human adenovirus 84, a highly recombinant new Human mastadenovirus D type with a
333		unique fiber gene. Virus Res. 2017;242:79-84.
334	8.	Ishiko H, Shimada Y, Konno T, Hayashi A, Ohguchi T, Tagawa Y, et al. Novel human
335		adenovirus causing nosocomial epidemic keratoconjunctivitis. J Clin Microbiol.
336		2008;46:2002-8.
337	9.	Balasopoulou A, Kokkinos P, Pagoulatos D, Plotas P, Makri OE, Georgakopoulos CD, et
338		al. A molecular epidemiological analysis of adenoviruses from excess conjunctivitis
339		cases. BMC Ophthalmol. 2017;17:51.

340	10. Fujimoto T, Matsushima Y, Shimizu H, Ishimaru Y, Kano A, Nakajima E, et al. A
341	molecular epidemiologic study of human adenovirus type 8 isolates causing epidemic
342	keratoconjunctivitis in Kawasaki City, Japan in 2011. Japanese Journal of Infectious
343	Diseases. 2012;65:260-3.
344	11. Uemura T, Migita H, Ueno T, Tsukahara-Kawamura T, Saeki Y, Fujimoto T, et al. Clinical
345	and virological analysis of epidemic keratoconjunctivitis caused by adenovirus type 54 in
346	a regional ophthalmic clinic in Kyushu, Japan. Clin Ophthalmol. 2018;12:511-7.
347	12. Infectious Agents Surveillance Report. Infectious Disease Surveillance Center, Japan.
348	IASR. 2008;29:346-7. (in Japanese)
349	13. Nakamura N, Hirano E, Kowada K, Ishiguro F, Yamagishi Z, Adhikary AK, et al.
350	Surveillance of adenovirus D in patients with epidemic keratoconjunctivitis from Fukui
351	prefecture, Japan, 1995-2010. J Med Virol. 2012;84:81-6.
352	14. Kaneko H, Suzutani T, Aoki K, Kitaichi N, Ishida S, Ishiko H, et al. Epidemiological and
353	virological features of epidemic keratoconjunctivitis due to new human adenovirus type
354	54 in Japan. Br J Ophthalmol. 2011;95:32-6.
355	15. Fujimoto T, Hanaoka N, Konagaya M, Kobayashi M, Nakagawa H, Hatano H, et al.
356	Evaluation of a silver-amplified immunochromatography kit for adenoviral conjunctivitis.
357	J Med Virology. 2019;91:1030-5.

358	16. Zhou X, Robinson CM, Rajaiya J, Dehghan S, Seto D, Jones MS, et al. Analysis of
359	human adenovirus type 19 associated with epidemic keratoconjunctivitis and its
360	reclassification as adenovirus type 64. Invest Ophthalmol Vis Sci. 2012;53:2804-11.
361	17. Lorenz RJ, Bogel K. Methods of calculation: The Spearman-Karber method. WHO
362	Monograph Series. 1973;23:321-9.
363	18. Atabani SF, Smith C, Atkinson C, Aldridge RW, Rodriguez-Peralvarez M, Rolando N, et
364	al. Cytomegalovirus replication kinetics in solid organ transplant recipients managed by
365	preemptive therapy. Am J Transplant. 2012;12:2457-64.
366	19. Kimura M. A simple method for estimating evolutionary rates of base substitutions
367	through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111-20.
368	20. Yamane S, Lee AW, Hanaoka N, Gonzalez G, Kaneko H, Ishida S, et al. Identification of
369	contamination in the American Type Culture Collection stock of human adenovirus type 8
370	by whole-genome sequencing. J Virol. 2013;87:1285-6.
371	21. Wigand R. Pitfalls in the identification of adenoviruses. J Virol Methods. 1987;16:161-9.
372	22. Guo DF, Shinagawa M, Aoki K, Sawada H, Itakura S, Sato G. Genome typing of
373	adenovirus strains isolated from conjunctivitis in Japan, Australia, and the Philippines.
374	Microbiol Immunol. 1988;32:1107-18.
375	23. Adhikary AK, Ushijima H, Fujimoto T. Human adenovirus type 8 genome typing. J Med
376	Microbiol. 2012; 61:1491-503.

377	24. Enomoto M, Fujimoto T, Konagaya M, Hanaoka N, Chikahira M, Taniguchi K, et al.
378	Cultivation for 21 days should be considered to isolate respiratory adenoviruses from
379	samples containing small numbers of adenoviral genomes. Jpn J Infect Dis. 2010;63:338-
380	41.
381	25. Akiyoshi K, Suga T, Fukui K, Taniguchi K, Okabe N, Fujimoto T. Outbreak of epidemic
382	keratoconjunctivitis caused by adenovirus type 54 in a nursery school in Kobe City, Japan
383	in 2008. Jpn J Infect Dis. 2011;64:353-4.
384	26. Badr KR, Parente-Rocha JA, Baeza LC, Ficcadori FS, Souza M, Soares CM, et al.
385	Quantitative proteomic analysis of A549 cells infected with human adenovirus Type 2. J
386	Med Virol. 2019;91:1239-49.
387	27. Yin J, Redovich J. Kinetic modeling of virus growth in cells. Microbiol Mol Biol Rev.
388	2018;82:e00066-17.
389	28. Kaneko H, Aoki K, Ohno S, Ishiko H, Fujimoto T, Kikuchi M, et al. Complete genome
390	analysis of a novel intertypic recombinant human adenovirus causing epidemic
391	keratoconjunctivitis in Japan. J Clin Microbiol. 2011;49:484-90.
392	29. Gonzalez G, Yawata N, Aoki K, Kitaichi N. Challenges in management of epidemic
393	keratoconjunctivitis with emerging recombinant human adenoviruses. J Clin Virol.
394	2019;112:1-9.

395 30. Hierholzer, J.C. Adenoviruses. In: Lennette E.H. et al., editors. Diagnostic procedures for

- 396 viral, rickettsial and chlamydial infections. 7th ed. Washington, DC: American Public
- 397 Health Association; 1995. pp. 169-88.
- 398 31. Udeh BL, Schneider JE, Ohsfeldt RL. Cost effectiveness of a point-of-care test for
- adenoviral conjunctivitis. Am J Med Sci. 2008;336:254-64.
- 400 32. Piednoir E, Bureau-Chalot F, Merle C, Gotzamanis A, Wuibout J, Bajolet O. Direct costs
- 401 associated with a nosocomial outbreak of adenoviral conjunctivitis infection in a long-
- 402 term care institution. Am J Infect Control. 2002;30:407-10.
- 403

404 **Figure legends**

405

406	Fig. 1 Methods of collecting cell pellets and supernatant. First, 250 μ L of the culture
407	supernatant was sucked by a pipette into a 1.5 mL micro-centrifuge tube A. A was centrifuged
408	at 1,500×g for 5 minutes, and then 200 μL supernatant was collected into a new 1.5 mL
409	micro-centrifuge tube B. The cells that remained in the well were carefully scraped with a
410	cell scraper and collected in tube A. We poured 500 μ L D-PBS into the same well to wash the
411	scraper and well, and then the wash solution was collected in tube A. Tube A was centrifuged
412	at 1500×g for 5 minutes, and the supernatant was discarded. Tube A was preserved as a pellet
413	tube and tube B as a supernatant tube within a -80°C refrigerator until DNA extraction
414	

415	Fig. 2 Cytopathic effects (CPE) of Human mastadenoviruses (Ads) on each day post-
416	infection (dpi). CPEs induced by Ad5, 37, 64, and 54 were photographed using a phase-
417	contrast microscope on 3, 4, 5, and 6 dpi (original magnification, ×200). The cells became
418	enlarged, rounded, and highly refractile in the early stages of CPE. After that, they aggregated
419	into irregular clusters, gathering on the bottoms of well plates (arrows) on 3 dpi for Ad5, 37,
420	and 64. On the other hand, in Ad54, the cell began to swell on 4 dpi, and the clear CPE was
421	recognized on 5 dpi. All the cells floated within 24 h for HAdV5, 37, and 64. Ad 54 required
422	48 h to develop the same kind of microscopic features. The initiation of CPE and the time
423	required until all the cells were impacted by CPE in Ad54 were delayed compared with the
424	other Ads. CPE was not observed in the negative control. N, negative control; Ad, Human
425	mastadenovirus; dpi, Days post-infection. Scale bar: 50 µm
426	
427	Fig. 3 The amount of Ads DNA copies and growth rate. The amount of Ads DNA copies in
428	pellets (a), supernatant (b), and total (c) per well post-infection. The viral copies increased
429	\sim 10,000-fold (maximum) within 3 dpi (a). Viral shedding of Ad5, 37, and 64 into the culture
430	supernatant was observed on 2 dpi (b). On the other hand, the viral load of Ad54 in pellets
431	reached ~100-fold of the inoculation levels on 2 dpi, reaching ~10,000-fold by 6 dpi. Ad54
432	exhibited slower viral load increases compared to the other Ad (c). Standard deviations of

.

434 mastadenovirus; Dpi, Days post-infection. 435 Fig. 4 The E1 gene expression level. mRNA of E1 gene serves as an indirect measure of viral 436 entry for each Human mastadenovirus type 5 (Ad5), 37 (Ad37), 54 (Ad54), 64 (Ad64), and 437 negative control (N), as detected by quantitative real-time PCR on 1, 2, and 3 dpi. The 438 relative E1 gene expression level for Ad54 was significantly lower compared with that of the 439 other Ads on 1 dpi and gradually increased on 2 and 3 dpi. The standard deviations for each 440 time point of the triplicate assays are indicated by error bars. *Significant differences (p < p441 0.05) between Ad54 and all the other Ads by one-way ANOVA followed by the Tukey-442 443 Kramer post hoc test. Abbreviations: Ad, Human mastadenovirus; N, negative control; N.D., 444 not detected; Dpi, Days post-infection 445 Fig. 5 Delayed E1 gene transcription initiation Phylogenetic analysis of the E1 upstream 446 region and E1 open reading frame (ORF) 447Phylogenetic tree of (a) the upstream region, including the E1 putative promoter and 448 449 regulator and (b) E1 gene among Ads related to EKC. Types Ad37 and 64 were the closest matches and were compared as predictors of Ad54. Ad54 was the closest to Ad8. Ad5 was, 450

triplicate assays at each time point are indicated by error bars. Abbreviations; Ad, Human

451	phylogenetically, the farthest from Ad54. The scale bar shows the number of base
452	substitutions per site.
453	* The length of upstream region is as follows: Ad5:559bp, Ad8:563bp, Ad37:569bp,
454	Ad54:568bp, Ad56:571bp, and Ad64:569bp.
455	[#] The Ad5 E1 ORF includes several introns and region from 560 to 1545 in AY339865.1.
456	(986bp). The Ad8 E1: ORF includes several introns and region from 564 to 1420 in
457	AY339865.1. (857bp). The Ad37 E1: ORF includes several introns and region from 570 to
458	1426 in AB448775.1. (857bp). The Ad54 E1: ORF includes several introns and region from
459	569 to 1425 in AB333801.2. (857bp). The Ad56 E1: ORF includes several introns and region
460	from 572 to 1422 in HM770721.2. (851bp). The Ad64 E1: ORF includes several introns and
461	region from 570 to 1426 in JQ326207.1. (857bp). Abbreviations; Ad, Human mastadenovirus
462	
463	
464	
465	
466	
467	
468	
469	

Ad type	$TCID_{50}/ml$ at 10^5 copies / μL	Ratio of TCID ₅₀ /ml at 10^5 copies / μ L*	
Ad5	$1.54 imes 10^5$	12	
Ad37	$1.87 imes 10^5$	14	
Ad54	$1.31 imes 10^4$	1	
Ad64	$3.43 imes 10^4$	3	

Table 1 The relationship between viral loads of Ad genomic DNAs and TCID₅₀

Abbreviations: Ad, Human mastadenovirus; TCID₅₀, the median tissue culture infective dose.

*The ratio of $TCID_{50}/ml$ was calculated by setting the $TCID_{50}/ml$ value at 10^5 copies/µL of Ad54 to 1.

Table 2 Growth rate of each Ads

Ad5	Ad37	Ad54	Ad64
0.11*	0.09*	0.05	0.09*

Abbreviations: Ad, Human mastadenovirus.

*Significant differences (p < 0.05) between Ad54 and all the other Ads by one-way ANOVA followed

by the Tukey–Kramer post hoc test.

480 Fig. 2

Supplemental Table. The primers used in this study.

Primer name	Nucleotide sequence (5'–3')	Target region	Reference
Hex3	GACATGACTTTCGAGGTCGATCCCATGGA	Ad5, 37, 64 hexon 3	
Hex4	CCGGCTGAGAAGGGTGTGCGCAGGTA	Ad5, 37, 64 hexon 4	Fujimoto T, et al. ¹⁵
Hex3-Ad54	GACATGACCTTTGAGGTGGACCCCATGGA	Ad54 hexon 3	
Hex4-Ad54	CCGGCGGAGAAGGGCGTGCGCAGGTA	Ad54 hexon 4	
Ad5_E1F	CCAACGAGGAGGCGGTTT	A 45 E 1	This study
Ad5_E1R	TCCTGCACCGCCAACAT	AUJ LI	
Ad54_E1_F	AATGACACGCCCCTGCAA	A 454 E1	This study
Ad54_E1_R	TCTCGCCACTCGGTCTAACC	Auj4 El	This study
Ad37, 64_E1_F	CCGGGCAAGGCTGTAGATC	A 427 64 E1	This study
Ad37, 64_E1_R	GCGTTTGTGTCTCCGGTCTT	Au57, 04 E1	This study

Ad, human mastadenovirus