# 3次元走査型コヒーレントドップラーライダーで観測された 福岡平野におけるストリーク構造

## Streaky Structures over Fukuoka Plain Observed by a 3D-scanning Coherent Doppler Lidar

今原隆晶<sup>1)</sup> 高島久洋<sup>1), 2)</sup> 白石浩一<sup>1), 2)</sup> 原 圭一郎<sup>1), 2)</sup> 林 政彦<sup>1), 2)</sup>

Takaaki IMAHARA<sup>1)</sup>, Hisahiro TAKASHIMA<sup>1), 2)</sup>, Koichi SHIRAISHI<sup>1), 2)</sup>, Keiichiro HARA<sup>1), 2)</sup>, and Masahiko HAYASHI<sup>1), 2)</sup>

令和元年5月31日受理

Received May 31, 2019

 福岡大学理学部地球圏科学科 Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan

2) 福岡大学産学官連携研究機関

「福岡から診る大気環境研究所」 Fukuoka Institute for Atmospheric Environment and Health, Fukuoka University, Fukuoka 814-0180, Japan

Corresponding author: H. Takashima, hisahiro@fukuoka-u.ac.jp

#### 1. はじめに

ストリーク構造とは、大気の主流方向に沿って流れ の低速部と高速部が筋状に伸びる縞状パターンを有す るものであり、対流ロール構造とは物理過程が区別さ れる(八木ほか,2013;日比野,2013).対流ロール 構造は、混合層内での地表面からの加熱により発生し た鉛直循環流が、水平風によってらせん状に引き伸ば されて形成されるが、ストリーク構造は、浮力の少な い中立境界層内で発生する乱流構造である(日比野, 2013).強風時は風の鉛直シアが生じ、流れの層流か ら乱流への遷移が起こり、ストリーク構造が発生する と考えられる(Asai *et al.*,2007;日比野,2013).

これらは鉛直スケールに違いがあり対流ロール構造 は境界層全体で発生するのに対し,ストリーク構造は 地表から約1km程度までの間に発生する(八木ほか, 2013).また,対流ロール構造は筋状の雲が形成され ることがあり,可視化が容易であるため実観測による

#### Abstract

Streaky structures over the Fukuoka plain were investigated using three dimensional (3D) wind observed by a 3D-scanning coherent Doppler lidar during October 2017. The streaky structures were visually classified from the Plan Position Indicator (PPI) scans at elevation angles of 0°. We derived horizontal wind direction/speed near the ground by using the PPI scans at an elevation angle of 0° under partly obstructed line-of-sight conditions, and investigated the relationship between the occurrence frequency of streaky structure and the wind speed. A higher frequency was observed at higher wind speeds, in which a strong wind speed was observed at both synoptic and local scales (such as sea breeze). We also investigated the boundary layer height and the spacing of the streaky structures and found a linear relationship between the Tukuoka plane.

Keywords: Doppler lidar, Streaky structures, local circulations

研究例は多いが,ストリーク構造では雲ができないた めに可視化が難しく,実観測による研究例は少ない.

近年ドップラーライダーによる風の精密な3次元観 測が可能になり,東京都市部でのストリーク構造が可 視化され(八木ほか,2013; Yagi *et al.*,2017),風速が 大きいほどストリーク構造が高頻度で発生し,ストリ ーク構造の間隔は大気境界層高度が高いほど大きくな ることが示されている.

福岡平野でも2016年11月末より,福岡大学A棟 屋上に3次元走査型コヒーレントドップラーライダー を設置し,境界層内の3次元風観測を開始した.本研 究ではドップラーライダーにより観測されたデータに ついて,先行研究の解析方法に従って解析を行うこと により,福岡平野のストリーク構造の発生と背景風 (風向・風速)との関係,ストリーク構造の間隔と風 速や大気境界層高度との関係を明らかにすることを研 究目的とする.

#### 2. 観測手法 / 解析手法

#### 2.1. 観測手法

本研究では福岡大学 A 棟屋上 (33.549°N, 130.366°E, 海抜高度約 56 m) に設置した 3 次元走査型コヒーレン トドップラーライダー(三菱電機製)により S/N 比お よびドップラー速度の観測を行った. ドップラーライ ダーの仕様を Table 1 にまとめた。ドップラーライダ ーは、大気中にパルスレーザー光を照射し、エアロゾ ル粒子からの散乱光を受信して信号周波数成分を解析 する. 測定対象となるエアロゾル粒子が移動している 場合は、受信信号がその移動速度に応じたドップラー 速度成分を持つため、大気の流れによって運ばれるエ アロゾル粒子の移動速度を計測し、それを風速として 導出する.また、受信信号の強度は大気塵の S/N 比 で表される.光源として波長 1.54 µm の近赤外線のレ ーザー光を用いる. 視線方向の BIN 数は 200 である. 本研究では距離分解能 60 m, 最大探知距離 12 km に 設定して観測を行った. 観測モードは, 仰角固定で 方位スキャンを行う PPI (Plane Position Indicator)と, 方位角固定で鉛直断面のスキャンを行う RHI (Range Height Indicator)の2種類があり、仰角0°,2°,10°の PPI 観測と方位角 0°, 112°の RHI 観測を行った (PPI 0°, 0°, 2°, 10°, 0°, RHI 観測 112°, 112°, 112°, 112°, 0°,0°,0°,0°).スキャナの回転速度は3分/回転に 設定し、1回の観測に要する時間は、PPI観測が約3分、 RHI 観測が約1.5分で、観測1サイクルの観測時間は 合計で約30分である.

 
 Table 1. Technical specifications of 3-D coherent Doppler lidar system

| Laser                          | DFB-Er doped fiber laser     |
|--------------------------------|------------------------------|
| Wavelength                     | 1.54 µm (Er. Glass)          |
| Pulse energy                   | 1.0 mJ/pulse                 |
| Pulse repetition rate          | 4000 Hz (average power: 4W)  |
| Pulse width                    | 200 ns                       |
| Telescope diameter (effective) | 120 mm                       |
| Range resolution               | 60 m                         |
| Measurable distance            | up to 12 km (200 range bins) |

#### 2.2 解析手法

本研究では、八木ほか(2013)に従って、視線速度 分布のパターンを視覚的に分類し、水平風速・風向、 ストリーク間隔、大気境界層高度の3つの物理量を導 出して解析を行った.ドップラーライダーが1ヵ月間 で得られるデータ数は PPI 観測が約7500, RHI 観測 が約1万2000になるため、Yagi et al. (2017)が解析 を行っている秋季に合わせて解析期間を2017年10月 の1か月間とした.以下,分類方法と物理量の導出方 法について記述する.

#### 2.2.1 視線速度分布パターンの視覚的分類

本研究では、八木ほか(2013)と同様の方法により 視覚的にストリーク構造を分類した.約4500個ある 仰角0°のPPI観測データの視線速度分布図を作成し、 目視で「ストリーク」、「その他」、「信号無し」に分 類した.ストリークの観測例をFig.1に示す.ストリ ーク以外の視線速度分布のパターンは「その他」とし て分類した.なおエアロゾル粒子の量が少なく十分な S/N比が得られなかったデータは「信号無し」に分類 した.



Fig. 1. An example of streaky structure observed by 3D coherent Doppler lidar at Fukuoka Plane (on 3 Oct 2017, 13:47) in a horizontal section. Colors indicate Doppler velocity (m/s), where warm colors indicate flow away from the lidar and cold colors toward.

#### 2.2.2 水平風速,風向の導出

本研究では仰角0°で観測された PPI データを使い 福岡平野内の地表付近での平均的な水平風速・風向を 導出した.水平風の導出には VAD (Velocity Azimuth Display)法 (Browning and Wexler, 1968)が用いられ ることが多い.しかし福岡大学2号館,図書館,文 系センター棟が障害となってデータが欠損する方位が 多い.本研究では方位によるデータ欠損を考慮し,福 岡平野の平均的な水平風向・風速の導出には,まず方 位10°,視線方向600~3000 mで平均し,ドップラー 速度が正と負の面積が大きい方で,ドップラー速度の 絶対値が最大となる方位を風向,その最大値を風速と



Fig. 2. Time series of wind direction (counterclockwise from east) /speed derived from Doppler lidar wind observations at Fukuoka University (33.55 °N, 130.37 °E) (red bar) and observed by anemometer at Roppon-matsu (130.38 °E, 33.58 °N; ~ 3.8 km away from the lidar) (blue circle) for Oct 2017.

した. ドップラーライダーで得られたデータを福岡管 区気象台 (130.38°E, 33.58°N, 34.6 m) と比較したとこ ろ, ドップラーライダーで得られた風速の方がやや 大きいものの, おおむね一致していることがわかる (Figs. 2, 3).

#### 2.2.3 ストリーク間隔の導出

八木ほか(2013)と同様に風向に直交する向きに沿 ってパワースペクトル密度を計算し,ストリーク間隔 をパワースペクトル密度の極大値からストリーク間隔 を求めた.具体的には,極座標系から風向と直行する 向きで直交座標系に変換し,100 m 四方の格子データ を作成し,3000 m × 500 m の領域でパワースペクト ル密度を求めストリーク間隔とした.なおパワースペ クトル密度を計算する際,計算範囲内に欠損値がある と正確な値を算出できないため,油山,福岡大学2号 館,中央図書館,文系センター棟によるデータの欠損 を考慮して分析領域を選定し,その領域内で計算を行 った.

#### 2.2.4 大気境界層高度の導出

大気境界層高度の導出には、方位角0°,112°で観 測された RHI 観測データについて、高度3 km 以下、 S/N 比 10 dB 以上を使用した.また、低仰角では S/N 比の勾配を検出に適していないため、仰角 30°以上の データのみを使用した.境界層上端でエアロゾルの量 が減少すると考え,S/N比の鉛直勾配の大きさが最も 大きくなる高度を大気境界層高度とした.ただしS/N 比の鉛直勾配が小さい観測データは解析に使用しなか った.具体的には各視線方向でS/N比の鉛直微分の 絶対値が最大となる高度を求め,その中央値を大気境 界層高度とした.なお,この条件下で2017年10月に ついて全データ(12162個)のうち約6割のデータで 大気境界層高度を導出することができた.



Fig. 3. Scatter plot of surface wind speed observed at Roppon-matsu (130.38 °E, 33.58 °N) and wind speed derived from 3D coherent Doppler lidar observation at Fukuoka University (33.55 °N, 130.37 °E).



Fig. 4. Time series of wind direction/speed observed by 3D coherent Doppler lidar at Fukuoka. Streaky structure is shown in red stars.

### 3. 結果·考察

Fig. 4 に 2017 年 10 月の風向・風速, ストリーク発 生の時系列を示す. この期間は北風と南東風が卓越 していた (Fig. 7 右の頻度分布からも確認できる). 22 ~ 24 日や 29~ 30 日のように、10 m/s 以上の強風(北 風)が総観規模場として卓越する時があり,その期間 はストリーク構造が継続してみられる.1日スケール の変動に着目し時間帯ごとの発生頻度を見ると(Fig. 5)、すべての時間帯でストリーク構造が発生している が,15時から18時に極大,5時から7時に極小がみ られる. 例えば10月7-9日の時系列をみると(Fig. 6)、夜~午前に極小、午後極大の1日周期の変動が卓 越している.この1日周期の変動は海陸風循環に対応 しており、午後の極大は海風と考えられ、この海風卓 越時にストリーク構造がみられる。ただし、この時の 風速の最大値は6m/s程度であり総観規模擾乱と比べ て小さい. Fig. 7 にストリーク発生時の風速の頻度分 布を示す.風速が大きい時ほどストリークの発生頻度 が高く,また1m/s以下ではストリークが発生してい ない. これらの風速とストリーク構造の対応は八木ほ か(2013)の東京都市圏内での観測の結果と一致する.

Fig.7にストリーク発生時の風向の頻度分布を示す. 主に北風(海風)と南東風(陸風)が多く発生しており,ストリーク構造が高頻度で発生しているのは北風時である. Fig.8にストリーク間隔と大気境界層高度



Fig. 6. Same as Figure 4, but during 7 - 9 October 2017.

の散布図を示す. ここでは S/N 比が高くストリーク 構造が観測され,またストリーク間隔と境界層高度が 導出できた約40個のデータを用いた.東京都市圏で の観測で見られるように(八木ほか,2013),境界層 高度が低いほどストリーク間隔が小さい線形関係が福 岡平野の観測でも見られる.八木ほか(2013)は,風 の速度勾配や大気の安定性もストリーク間隔のスケー リングパラメーターとなると考えられ,今後は速度鉛 直勾配や大気安定度についての解析が必要である.



Fig. 5. Frequency of occurrences of streaky structure in local time during October 2017.



Fig. 7. Number of occurrences of wind speed (left) and direction (right) for all observations (dotted bar) and for streaky structure (gray bar).



Fig. 8. Scatter plot of boundary layer height (km) and spacing of streaky structures (m).

#### 4. まとめ

福岡大学 A 棟屋上に設置した 3 次元走査型コヒー レントドップラーライダーを用いて,福岡平野におけ る 2017 年 10 月のストリーク構造について調べた.方 位角が一部遮られた状態において仰角 0 度の PPI 観測 から水平風向・風速を導出し,ストリーク構造の発生 と風速の関係について調べた.福岡平野において総観 規模擾乱や海風にともなう風速が早い状態の時にスト リーク構造の発生頻度が高く,またストリーク構造の 間隔と境界層高度に線形関係があることを示した.

#### 謝辞

本研究は福岡大学産学官連携研究機関「福岡から診 る大気環境研究所」の枠組みで実施した.また小林国 際奨学財団の助成を受けた.西田千春博士から有益な コメントをいただいた.図の作成には地球流体電脳ラ イブラリを用いた.

#### 参考文献

- Asai M, Konishi Y, Oizumi Y, Nishioka M (2007) Growth and breakdown of low-speed streaks leading to wall turbulence. *Journal of Fluid Mechanics*, **586**, 371-396.
- Browning, K. A, and R. Wexler (1968) The Determination of Kinematic Properties of a Wind Field Using Doppler Radar. *Journal of Applied meteorology and meteorology*, 7, 105-113.
- Yagi, A., Inagaki, A., Kanda, M., Fujiwara C., Fujiyoshi, Y (2017) Nature of Streaky Structures Observed with a Doppler Lidar. *Boundary-Layer Meteorology*, **163**, 19-40.
- 日比野研志(2013)大気境界層におけるストリーク構 造の生成・発達・崩壊過程に関する数値的研究.京 都大学博士論文.

https://doi.org/10.14989/doctor.k17363

- 藤吉康志(2013) ドップラーライダーによる流れの観 測と物質輸送. ながれ, 32, 301-306.
- 八木綾子・有馬次郎・稲垣厚至・神田学・藤原忠誠・ 藤吉康志(2013)ドップラーライダーによる都市上 空の流れ分析.土木学会論文集 B1(水工学), 69(4), 1753-1758.