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A Gentle Introduction to Isogeometric Analysis
Part 4: 2-Dimensional Elastostatic Analysis *

Keiji YANASE **

In this study, two-dimensional elastic problems are tackled with the NURBS-based isogeometric analysis. In practice, there is a subtle 
difference between the conventional FEM approach and the one with NURBS. Accordingly, the knowledge on the finite element 
analysis is equally applicable to the isogeometric analysis in writing the computer code. Several demonstrations show the superiorities 
and the interesting properties of the method.
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1. Formulations with B-spline
    Based on the previous studies [1][2][3], we now tackle 
the numerical simulation in two dimensions. In essence, 
the geometry of problem can be accurately represented by 
B-splines and NURBS [1-6]:

 (1)

where  represents the coordinates of control points. The 
superscript “g” denotes that the basis functions may be 
different from those describing the displacements.
    The strain tensor is rendered as:

 (2)

where  and  are the displacements in the x- and 
y-direction. The displacement vector can be approximated 
by B-splines as follows:

 (3)

The use of Eqs. (1) and (3) is sharp contrast to the 
isoparametric concept of classical finite element method in 
which the same basis functions are used for the description of 
geometry and displacement.
　　To calculate the strain tensor, the derivatives of the 
displacement vector should be calculated as follows:
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　　　　　  (4)

　　　　　  (5)

To evaluate Eqs. (4) and (5), we can make use of the 
following chain rule:

　　　  (6)

　　　  (7)

Based on Eqs. (6) and (7), we obtain the following equation:

　　　　  (8)

where (cf. Eq. (1)):

　　  (9)

Now we can evaluate the derivatives of the displacement 
vector. For convenience, let us rewrite the stain tensor as 
follows:
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・・  (10)

where:

　　  (11)

For convenience, we rewrite Eq. (10) as:

　　　　　　　  (12)

　　Based on Hooke’s law, we calculate the stress tensor. For 
plane stress condition, it is rendered as:

 (13)

For plain strain condition, it is rendered as:

(14)

where E is Young’s modulus and  is Poisson’s ratio. 
Therefore, the strain tensor is rendered as:

　　　　　　　　　  (15)

Thus, the stored energy, U, is rendered as:

 (16)

It is noted that  On the other hand, by anchoring the 
points where the concentrated external force is applied, the 
external virtual work, W, is rendered as:

　　　 ・・  (17)

where:

　　　　　  (18)

Thus, the potential energy is rendered as:

　　　　　　  (19)

Then, the theorem of minimum potential energy renders the 
following equation:

　　　　  (20)

We rewrite Eq. (20) as:

　　　　　　　　　　　  (21)

Here, K signifies the global stiffness matrix.

　　Based on Fig. 1, we can express the following vectors in 
the x-y coordinate as follows:

　  (22)

Then, the infinitesimal area, dA, in the x-y coordinate can be 
calculated as:

 

(23)

where:

　　　  (24)
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Therefore, by taking advantage of Gauss integration, the 
stiffness matrix can be evaluated as follows:

　　　
A

 (25)

where t is the thickness and Wi is the weight for the Gauss 
integration.

Fig. 1. Infinitesimal area with coordinate transformation.

2.1. Example (1): Rectangular Plate

　

Fig. 2. Geometry of the problem and description of the 
geometry with one NURBS patch.

    Let us consider a simple example to understand the 
differences between the classical FEM and the NURBS-
based analysis. Here, we tackle a plate supported at edges and 
subjected to a concentrated force, as shown in Fig. 2 [1]. The 
plate is made of a carbon steel and the materials properties are 

The plain stress condition is 
assumed.

     For the analysis with B-spline, we first define the geometry 
by using the linear basis functions (p = 1). The corresponding 
knot vectors are given as:

　　　　　　　　  (26)

Thus, based on Eq. (1), the geometry can be expressed as:

　　　　　　　  (27)

where (cf. Fig. 2):

　　　　　　  (28)

　　　　　　  (29)

By considering the sub-regions, we can write u and v as (Fig. 
3):

　　　　　　  (30)

Fig. 3. Coordinate transformation.
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    Figs. 4 and 5 show the basis functions in the three-
dimensional  space.  I t  is  noted that  the coordinate 
transformation is applied with Eq. (27). As shown, in 
conjunction with refinement, the span of basis function 
becomes smaller.

(e)
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    To implement the calculation, we need to prepare the 
data for the geometry and boundary conditions and the 
material properties. For example, please see the following 
program that is related to Fig. 4(a):
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    Fig. 6 shows the variations of maximum deflection with 
the increase of degree of freedom, DOF. As a reference, 
the solutions with f inite element method (FEM) is 
provided. This FE analysis was conducted with the Excel-
VBA program [10]. As clearly shown, the convergence 
of solution with isogeometric analysis (IGA) exhibits a 
superior performance than the classical FEM. It is noted 
that the preparation of geometry data is much simpler in 
IGA.

2.2. Example (2): Plate with a circular hole under 

uniform tension
    In some cases, it is convenient to use more than one 
NURBS patches to describe the geometry. Since there are 
no nodal points, the compatibility conditions have to be 
prescribed appropriately. Accordingly, C0-compatibility 
between patches needs to be ensured if the location of 
anchors match along the line where patches connect. These 
conditions can be enforced by using incidences for the 
assembly of coefficient. The incidences refer to the anchors 
in IGA, instead of nodal points in the classical FEM. 
   In practice, NURBS are particularly well suited to linear 
elasticity. It is obvious that the accurate geometrical 
representation at all levels of discretization should lead to 
improved accuracy as compared with less geometrically 
accurate methods. In this two-dimensional example, we use 
the NURBS-based isogeometric analysis for a problem in 
solid mechanics having an exact solution: an infinite plate 
with a circular hole subjected to uniform tension (Fig. 7). 
The exact solution for infinite plate is rendered as [4][5]
[11]:

　　  (31)

where  is the uniform stress applied at infinity and R is 
the hole radius. For convenience, we analyze a quarter 
plate by considering the symmetry boundary condition. For 
analysis, the following input data are used:

    In practice, to deal with the problem of infinite plate by 
using the finite quarter plate, the stresses given by Eq. (31) 
are adopted as Neumann boundary conditions (i.e., prescribed 
tractions) at the boundary of the finite quarter plate (Fig. 7). 
Under this circumstance, it may be convenient to express the 
stresses in the x- and y-coordinate. Then, after the coordinate 
transformation [11], Eq. (31)   becomes:

 (32)

where:

　　  (33)
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    We start with the description of the geometry with 2 
NURBS patches with 10 control points, as shown in Fig. 8. 
We can reproduce Fig. 8  with the following MATLAB 
code.
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    Fig. 9 shows the NURBS patches created with the 
MATLAB code. Because of C0-compatibility along the 
connection of patches (Figs. 9(a) and (b)), the assemblage 
of NURBS patches (Fig. 9(c)) can properly reproduce the 
original geometry.
    Since the NURBS basis functions are involved in the 
analysis, let us consider its first derivatives. The NURBS basis 
functions are rendered as [4][5]:

　　　  (34)

    For example, concerning the NURBS patch (1) shown in 
Fig. 8, the weights, wi,j, are rendered as:

 (35)

Further, W in Eq. (34) is rendered for the NURBS patch (1) 
as follows:

 (36)
Eq. (36) can be rewritten as:

 (37)

Based on Eq. (34), the derivatives of NURBS basis 
function are rendered as:

 (38)

 (39)

    The following MATLAB code calculates the Jacobian, 
Ju, defined in Eq. (24).

− 11 −



（12）

福岡大学工学集報　第101・102号（平成31年3月）

    Concerning the unknown field variables, let us consider 
the following knot vector for each NURBS patch as shown 
in Fig. 10:

　　　　　　  (40)

For the assembly process to construct the system equation, 
we need to define the connectivity between the patches. 
Thus, we define the following incidence vectors:

　　　　  (41)

    Let us consider the force vector, F, associated with the 
applied traction, as shown in Fig. 7. Traction vector for patch 
(1) is rendered as (Fig. 10):

　  (42)

where  is the stress tensor and  is the unit 
outward normal vector. For instance, concerning the patch 
(1), Eq. (42) render the following equation:

　　　　　  (43)

Then, the external virtual work, W, is calculated as:

 (44)

where:

　　　　　　  (45)

To make use of the Gauss integration, we evaluate Eq. (45) 
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with the -coordinate as follows:

 (46)

Finally, based on the theorem of minimum potential energy, 
the force vector is rendered as:

 (47)

 (48)

    The following program is for providing the input data in 
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conjunction with Figs. 8 and 10.
   The machine and structural components have various 
geometrical discontinuities (e.g., hole, keyway and groove) 
that trigger the stress concentration and they can serve as 
the crack initiation sites [7][8][9]. The crack initiation and 
growth is a major concern for the reliability of the machine 
and its structural components. Therefore, understanding 
and identifying stress concentration sites is essential for 
engineers [10][11]. Correspondingly, the following program 
is prepared to compute the stress distribution at y = 0. 
Accordingly, only the NURBS patch (2) is considered for 
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calculation (cf. Figs. 7, 8 and 9).
    For this problem (cf. Fig. 7), the stress concentration factor 
is 3. The analysis was performed with , thus 
the maximum stress of  should be rendered as = = 
3×100 MPa = 300 MPa at the edge of hole. It is noted that 
the numerical integration for obtaining the stiffness matrix 
was performed with 4×4 integration points for each sub-
region. Figs. 11 and 12 show the stress distribution at y = 0. 
As shown, by using the refinement strategies, the numerical 
solution converges to the exact solution. As expected, 
k-refinement shows a superior result over h-refinement in 
terms of accuracy (cf. Fig. 11(c) and Fig. 12(c)).
    Figs. 13 and 14 show the effect of Gauss quadrature rule 
on the numerical solution. As shown, when the number of 
Gauss points is insufficient, the numerical solution has a large 
oscillation that is not observed for the exact solution. In these 
simulations, 3×3 Gauss quadrature rule can provide a good 
result, irrespective of polynomial order, p.
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Conclusions
    In this study, two-dimensional elastic problems are 
tackled with the NURBS-based isogeometric analysis. It is 
noted that the knowledge in the finite element analysis is 
equally applicable to the isogeometric analysis in writing 
the computer code. Several demonstrations show the 
superiorities and the interesting properties of the method.
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