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Abstract 

The aim of this study was to evaluate the effects of dicalcium phosphate dihydrate 

(DCPD)-coated titanium implants on bonding to bone under osteoporotic conditions. We 

measured the bone mineral density (BMD) using peripheral quantitative computed 

tomography (pQCT) densitometry and evaluated the bone-implant shear force using push-out 

tests in ovariectomized rats. Twenty-week-old female rats underwent ovariectomy, and 

DCPD-coated and uncoated implants were inserted intramedullary into the right and left 

femurs, respectively, eight weeks after operation. Both the femora and right tibia were 

retrieved four weeks after implantation. In the 16 operated rats, the BMD in the right tibia 

was measured while the bilateral femora underwent mechanical push-out tests. The total and 

cancellous BMDs (± standard deviation) were 566.0 ± 26.3 and 114.5 ± 38.2 mg/cm3, 

respectively. The bone-implant shear force of the DCPD-coated implants was higher than that 

of the uncoated implants (p < 0.05). Our findings suggest that DCPD coating may improve 

fixation to the bone, even in the presence of osteoporosis. 
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Introduction 

Since the advent of total hip arthroplasty (THA), a cementless femoral stem has been 

commonly used, and good long-term results have been reported. Various designs have been 

developed, and the use of porous metal surfaces, in particular, has enabled biological fixation 

to be achieved through ingrowth of bone1-4). Along with biomechanically optimized implant 

designs and bioactive coatings for enhanced bone ingrowth, the indications of the cementless 

stem have been gradually expanded to include elderly patients with impaired bone quality 

and limited healing capacity5-9). However, low bone mineral density (BMD) and age-related 

geometric changes of the proximal femur have been shown to affect the initial stability and 

delay osteointegration to the cementless femoral stems in THA10). Therefore, the 

development of a cementless stem that will confer implant stability under osteopenic 

conditions is necessary. 

As a bioceramic coating material for prosthetic implants, hydroxyapatite (HA) has been 

commonly used and is known to accelerate bone healing and enhance the biological fixation 

of implants due to its biocompatibility and osteoconductive potential. A clinical 

meta-analysis based on 12 studies showed that an HA coating was able to reduce the 

incidence of femoral osteolysis, although there was no statistical difference in the femoral 

stem survival rate between those with an HA coating and those without11). In their 

experimental study, Søballe et al. showed that the osteoconductive potential of HA-coated 
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implants was greater than that of non-HA-coated implants under osteopenic conditions12). 

They also showed that there was no significant difference in the stability of HA-coated 

implants between osteopenic and non-osteopenic conditions12). However, Hara et al. reported 

that the stability of HA-coated implants under osteopenic conditions was inferior to that of 

non-osteopenic conditions using rats13). 

As an alternative bioceramic coating material, dicalcium phosphate dihydrate (DCPD) 

has been developed for use with medical and dental implants due to its biocompatibility and 

ability to bond directly to bone. Chow et al. reported that DCPD dissolved about three times 

faster than HA in their in vitro study14). In a pig study, the DCPD coating was substituted by 

bone without giant cell reaction until three months later15). The traditional titanium porous 

coated implant is known for enabling rigid mechanical fixation. If the DCPD coating is added 

to this implant, we expect a greater osteoconductive potential, thereby increasing the 

mechanical strength of the bone-implant interface. To our knowledge, however, no study has 

assessed whether or not a DCPD coating improves bone-implant fixation under osteoporotic 

conditions.  

In this study, we evaluated the bone-implant shear force of DCPD-coated titanium 

implants in ovariectomized rats to confirm the effects of DCPD under osteoporotic 

conditions. 
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Materials and Methods 

Animal experimental design and surgical procedures 

This study protocol was approved by the Fukuoka University Animal Care and Use 

Committee. A total of 21 female Wistar rats were purchased from Japan SLC, Inc. (Shizuoka, 

Japan) and maintained in separate plastic cages under normal conditions (22-26 °C; air 

humidity 55%-60%; 12-h light/dark cycle) with free access to food and water. At 20 weeks of 

age, the rats (mean weight: 199.9 ± 7.1 kg) underwent bilateral ovariectomy under general 

anesthesia induced by intraperitoneal injection with medetomidine hydrochloride (Domitol; 

Meiji Seika Pharma Co., Ltd., Tokyo, Japan) at a dose of 0.375 mg/kg, midazolam 

(Dormicum; Astellas Pharma Inc., Tokyo, Japan) at a dose of 2 mg/kg, and butorphanol 

(Vetorphale; Meiji Seika Pharma Co., Ltd.) at a dose of 2.5 mg/kg, as described previously16). 

Eight weeks after ovariectomy, implants were inserted into the bilateral femora of the rats via 

a medial parapatellar approach under similar anesthesia. After lateral dislocation of the 

patella via a 2-cm skin incision, a 1.6-mm-diameter hole was drilled into the medullary cavity 

of the femur.  

Cylindrical titanium implants (18 mm long and 1.4 mm in diameter) coated with DCPD 

were inserted into the right femora, while implants without the DCPD coating were inserted 

into the left femora. The implant was a sandblasted Ti6-Al4-V rod and the thickness of the 

DCPD coating with electrochemical deposition was 20 µm. The implants were manufactured 
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by Aesculap AG (Tuttlingen, Germany).  

Two rats died after ovariectomy and one rat died after the implantation procedure. The 

remaining 18 rats were euthanized with an overdose of anesthesia inhalation using isoflurane 

(Wako Pure Chemical Industries, Ltd., Tokyo, Japan), and the specimens were retrieved 4 

weeks after the implantation procedure. Two rats (one in the right and one in the left femur) 

had malpositioned implants and were thus excluded from this study. The remaining 16 rats 

were used for mechanical testing and BMD measurement. 

 

Peripheral quantitative computed tomography densitometry 

The cross-sections of the proximal right tibiae were scanned using a peripheral quantitative 

computed tomography (pQCT) system (XCT Research SA+, version 6.20 C; Stratec 

Medizintechnik GmbH, Pforzheim, Germany). This system uses a 50-kV/0.3-mA X-ray 

source. On a scout view of the proximal tibia, a scan line was manually placed so that the 

cross-sectional slice passed 3 mm distal to the growth cartilage. The scan duration was 10 

minutes, and the voxel size was 0.12 × 0.12 × 0.46 mm. The total and cancellous BMDs were 

recorded using the pQCT software program. 

 

Mechanical testing 

Mechanical testing was conducted to evaluate the bone-implant shear force of the cancellous 
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bone by pushing out the implants to the condylar of the femur, as described previously13, 17, 18). 

The implants were cut at the proximal end, fixed into a plastic tube (diameter: 10 mm), and 

embedded in polymethyl methacrylate (PMMA). After PMMA fixation, the specimens were 

further cut until the area 5 mm from the proximal end of the implant was exposed (Fig. 1a). 

The shear force of the bone-implant interface was measured using the EZ-Test pressure 

device (EZ-LX; Shimadzu Corporation, Kyoto, Japan) (Fig. 1b). The implants were displaced 

at a constant rate (6.0 mm/min), and the peak force was recorded with the TRAPEZIUMX 

software program (Shimadzu Corporation) (Fig. 2). 

 

Statistical analyses  

For statistical analyses, the data were analyzed using the GraphPad Prism software program, 

version 5.0 (GraphPad Software, San Diego, CA, USA). The mean peak forces and standard 

deviation (SD) for the DCPD-coated and uncoated implants were calculated, and the 

differences were analyzed using the Mann-Whitney test. Significant differences were defined 

as values of p < 0.05. 
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Results 

pQCT densitometry 

The total and cancellous BMDs were 566.0 ± 26.3 and 114.5 ± 38.2 mg/cm3, respectively 

(Fig. 3), values which were similar to those obtained by pQCT densitometry in previous 

studies in rats17, 19). 

 

Bone-implant shear force 

The mean bone-implant shear forces of the DCPD-coated and uncoated implants in the 

ovariectomized rats were 72.6 ± 21.2 and 33.5 ± 10.7 N, respectively. The DCPD-coated 

implants showed a significantly higher bone-implant shear force than the uncoated implants 

(p < 0.05) (Fig. 4). No cement fractures were detected between the bone and PMMA after 

mechanical testing.  
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Discussion 

The present study showed that the bone-implant shear force of DCPD-coated implants was 

significantly higher than that of uncoated implants in ovariectomized rats. 

With the increase in the mean life expectancy, patients requiring THA are frequently 

elderly and often have osteoporosis. Considering the prognosis of cementless THA, the 

integrity of the bone-implant interface is the main determining factor predicting the implant 

survival20). Bone resorption around the periprosthetic area and consequent shifting of the 

implant are negative factors affecting the long-term outcome17, 20). The bone-implant interface 

in the metaphyseal area is generally filled with cancellous bone. Because ovariectomized rat 

models are associated with loss of cancellous bone, animal study models based on 

ovariectomized rats provide conditions similar to that of a postmenopausal osteoporotic bone 

host17, 21). In our study, the total and cancellous BMDs in the ovariectomized rats were 566.0 

± 26.3 and 114.5 ± 38.2 mg/cm3, respectively, values which were similar to those obtained in 

previous studies using ovariectomized rats17,19). 

Calcium phosphate coatings were first described in 1986 and have been shown to 

produce a significant early effect on bone tissue formation with a porous coating22, 23). The 

DCPD coating is a resorbable calcium phosphate ceramic that absorbs without giant cell 

reactions until three months later15). It continuously dissolves into calcium and phosphate 

ions in a 1:1 ratio24). This continuous dissolution of DCPD helps keep the pore coating open 
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for bony ingrowth. Chen et al. reported that the titanium porous surface with and without the 

DCPD coating exhibited de novo bone formation on the implant surface as early as two 

weeks after implantation. At this time-point, osteoblasts were observed around the new bone 

on both the implant surface and adjacent host bone25). The osteoconductive characteristics 

and in vivo behavior of DCPD have been previously investigated in animal models26). 

Gottlander et al. showed that the bone-to-implant contact with the calcium phosphate coating 

was greater than that of an uncoated control under normal conditions at four weeks of 

follow-up27). Similarly, in our study using ovariectomized rats, the bone-implant shear force 

of the DCPD-coated implants was 2.2 times that of the uncoated implants four weeks after 

implantation. This finding suggests that the DCPD coating may improve the bone-implant 

shear force, even under osteopenic conditions. 

Of note, another experimental study using rats with HA-coated implants was conducted 

by Nakamura et al. and showed an even higher shear force of about 122 N at 4 weeks in the 

ovariectomized group17). The HA coating might be superior in initial bone-implant fixation 

strength. HA is well known as a nonresorbable bioceramic coating with a strong 

osteoconductive effect and a gap-filling ability at bone-HA contact. However, Reigstad et al. 

reported that the fixation pattern differed between HA and calcium phosphate coatings, with a 

sharper but time-constrained increase in fixation for the HA-coated implant, and a slower but 

more steadily increasing fixation pattern for resorbable calcium phosphate-coated implants28). 
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Despite the encouraging results with the DCPD coatings in the present study, the long-term 

effects of the biodegradation of this coating are still unknown. Additional studies should 

therefore investigate the long-term stability of the DCPD coating. 

Several limitations associated with the present study warrant mention. First, the BMD 

of sham-controlled rats was not included in the present study. However, the total and 

cancellous BMDs in our study were similar to those obtained on pQCT densitometry in 

previous studies in rats17, 19). Therefore, the rats in the present study were considered to be 

osteoporotic. Second, we did not evaluate the bone-implant shear force under normal 

conditions. Although the DCPD coating significantly improved the bone-implant shear force 

under osteoporotic conditions, it was unclear how the shear force was improved compared 

with normal conditions. 

In conclusion, our findings suggest that DCPD coating improves the implant fixation, 

even under osteoporotic conditions. 
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Figure 1(a) 

  

(b) 

  

Push-out test. (a) The femoral segment was potted in PMMA using a flat-bottomed 

cylindrical mold. (b) A potted test specimen was set with the testing machine. The implant 

axis was set parallel to the pushing-out loading direction. 
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Figure 2 

 

 

The representative timeline of the shear force during the process of pushing out the implant. 

The peak force was determined as the ultimate compressive force (N) necessary to push out 

the implant. 
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Figure 3 

 

 

 

The total and cancellous bone mineral density (BMD) of the tibia were measured using 

peripheral quantitative computed tomography (pQCT). The data are expressed as the mean 

(bars) and standard deviation (error bars). 
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Figure 4 

 

 

 

 

The bone-implant shear forces of the DCPD-coated and uncoated implants four weeks after 

implantation. The data are expressed as the mean (bars) and standard deviation (error bars). A 

significant difference is indicated by the * (p < 0.05, the Mann-Whitney test).  
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