乳酸菌およびその抗炎症成分を利用した炎症性腸疾患(IBD) 予防・治療薬の開発

IBD 予防・治療薬開発チーム (課題番号:127007)

研究期間:平成24年7月26日~平成27年3月31日

研究代表者: 鹿志毛信広 研究員: 見明史雄

【研究成果】

1. 背景

炎症性腸疾患(IBD)は、潰瘍性大腸炎やクローン病に代表される腸管に炎症を繰り返す慢性疾患であり、難病に指定されている。現時点では、IBDを完治させる治療薬は存在せず、抗炎症薬の服用により炎症の発生を抑えている。しかし、現存の抗炎症薬は、中等度以上の患者に対して効果がないケースが多く、腸管摘出などの手術を行う患者は発症後10年で70.8%と非常に多い。よって、高い抗炎症作用を持つ新たなIBD予防・治療薬の創出が望まれている。

我々は、新たなIBD予防・治療薬を創出すべく、乳酸 菌が持つ抗炎症作用に注目した。乳酸菌は、古くから食 品として利用されており、安全性が高いと考えられる。 また、近年、乳酸菌の菌体内や細胞壁、菌体外分泌物 などに含まれる抗炎症成分を利用してIBDの予防・治療 を目指す研究が行われている (Gastroenterology 2004, 126 (2):520-528, Gut 2011:60(8)1050-1059)。 我々はこれま でに、乳酸菌に含まれるゲノムDNAが乳酸菌そのもの より高い抗炎症作用を持つことを明らかにし(Microbes Infect., 2013, 15 (2):96-104.)、乳酸菌ゲノムDNAが新たな IBD予防・治療薬となる可能性を見出した。しかし、乳 酸菌ゲノムDNAは、高分子量(分子量 1×10⁹以上)な ため不安定である。また、乳酸菌からゲノムDNAを抽 出する工程は煩雑である。さらに、乳酸菌ゲノムDNA を全合成することは、その全長から困難である。これら の問題点から、現時点での乳酸菌ゲノムDNAの創薬化 は困難である。

2. 目的

抗炎症作用を有する乳酸菌ゲノムDNAの創薬化上の問題点を解決するために、我々は、乳酸菌ゲノムDNAに含まれる、抗炎症作用を持つ短い配列(オリゴデオキシヌクレオチド:ODN)の存在に着目した。実際これまでに、免疫賦活作用や抗炎症作用を持つODNが報告されている(Cell Microbiol 2005;7(3):403-414.)。ODNは、低分子量(分子量5,000以下)で、安価に合成可能なため、ゲノムDNA調製の問題点を解決することができる(図1)。乳酸菌に存在する抗炎症作用を持つODNは、安全で効果の高いIBD予防・治療薬になることが期待できる。よって、本研究では、①ヒト結腸癌由来細胞株Caco-2を用いて、抗炎症作用を持つ乳酸菌Lactobacillus casei(Lc)のゲノムDNAから、抗炎症作用を持つODNを特定した。さらに、②抗炎症作用を持つODNがIBDモデルマウスの大腸炎を抑制できるか検討を行った。

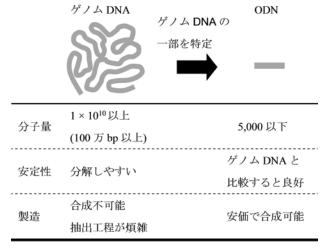


図1 ゲノムDNAとODNの比較

3. 方法

3.1. LcのゲノムDNAライブラリーの作製

LcのゲノムDNAを 4 塩基 認識 酵素 Sau3AIで切断し、アガロースゲル電気泳動により分離した後、200–1000 bpの断片を抽出した。これらの断片をプラスミド pUC19の Bam H Iサイトに挿入し、大腸菌 DH5 α に形質 転換した。LcのゲノムDNA由来断片の挿入は、コロニー PCRにより確認した。

3.2. IL-8 遊離抑制作用を指標としたLcのゲノムDNAライブラリーの抗炎症作用の評価

LcのゲノムDNAライブラリーとして選択した100個の 形質転換体からプラスミドDNAを抽出し、大腸菌由来 のエンドトキシンを除去した。そして、これらのプラスミドDNAの抗炎症作用を評価するために、24ウエルプレートに分注したCaco-2細胞 2×10^5 cells/well/500 μ l に、 $1\,\mathrm{mM}\,\mathrm{H}_2\mathrm{O}_2$ の存在下、プラスミドDNA($10\,\mu\,\mathrm{g/ml}$)を曝露して48時間インキュベートした。 $\mathrm{H}_2\mathrm{O}_2$ の作用によって遊離される培養上清中のIL-8濃度をELISA法により測定し、プラスミドDNAの抗炎症作用を評価した。

3.3. ODNの特定

DNAシークエンサーを用いて、 H_2O_2 によるIL-8の遊離を抑制したプラスミドDNAに含まれるLcのゲノムDNA由来配列を決定した。次に、遺伝子解析ソフトウエア(GENETYX version 11、ゼネティックス社製)を用いて、これらの配列の中に高頻度に存在する共通配列を探索した。そして、これらの共通配列のセンス鎖、アンチセンス鎖を合成し、抗炎症作用を示すODNの候補

とした。次に、これらのODNを用いて、3.2と同様に、Caco-2細胞に H_2O_2 の存在下でODNを暴露し、IL-8の遊離量を測定することで、抗炎症作用を評価した。

3.4. 実験動物

6週齢の雄のC57BL/6Nマウス(九動、佐賀)を実験に用いた。マウスは、プラスチックケージの中に、室温23±2℃、12時間の明暗サイクル(7:00AM点灯)の動物室で飼育した。なお、エサはCE-2(クレア、東京)を用い、水は自由に摂取できるようにした。実験動物の取り扱いは、福岡大学動物実験委員会規程に従った。

3.5 IBDモデルマウスの作製およびODNの症状軽減作用の検討

DSS誘発性大腸炎マウスは、6週齢の雄のC57BL/6Nマウスに3%DSS溶液を7日間飲水として与えることにより作製した。ODNの経口投与(2 nmol/g mouse)は、DSSの投与を開始する 6 日前より 2 日おきに 5 回行った(図 <math>2)。DSSの投与 $0 \text{ 日目より、毎日、体重の測定、下痢および血便の観察を行い、スコア化した。そして、それぞれのスコアを合計し、Disease activity index(DAI)を算出した。DSS投与7日目にマウスを解剖し、大腸を摘出した。大腸の長さを測定後、タンパク質およびRNAをそれぞれ抽出した。タンパク質抽出物は、MPO活性の測定に使用した。また、RNA抽出物は、逆転写後、リアルタイムPCR法を用いたIL-8のマウスホモログであるMIP-2、炎症関連タンパク質であるiNOSおよびCOX-2のmRNAの発現量の測定に使用した。内標準遺伝子には、<math>\beta$ -actinを使用した。

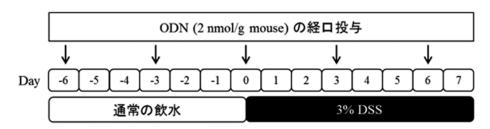
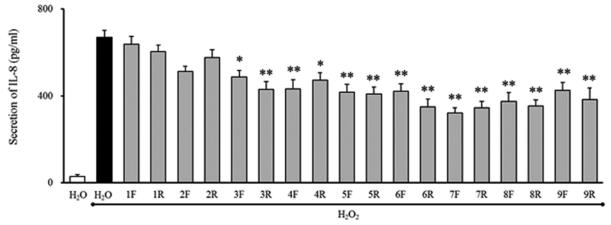


図2 DSSおよびODNの投与スケジュール


4. 結果

4.1. 抗炎症作用をもつODNの特定

本研究では、LcのゲノムDNAライブラリーから100 個の形質転換体を選択した。選択した100個の形質転換 体からプラスミドDNAを抽出し、Caco-2細胞における IL-8遊離抑制作用を検討したところ、24個のプラスミ ドDNAが抗炎症作用を示した。これらの配列の中で最 も長い共通配列は8塩基であり、3個以上のプラスミド DNAに含まれていた8塩基からなる配列は9種類存在 した。したがって、この9種類の配列について、それぞ れのセンス鎖、アンチセンス鎖からなる18種類のODN を合成し、抗炎症作用を示すODNの候補とした(表1)。 これら18種類のODNについて、Caco-2細胞におけるIL-8 遊離抑制作用を検討したところ、1F、1R、2F、2Rを除 く、14種類のODNが抗炎症作用を示した(図3)。以降 の実験には、抗炎症作用が強かった7F、7R、8Fを用いた。 また、抗炎症作用を示さなかった1Fをネガティブコン トロールとして用いた。

表1 LcのゲノムDNAに含まれる抗炎症作用を持つODNの候補

Sense		Anti-sense	
No.	Sequence $(5' \rightarrow 3')$	No.	Sequence $(5' \rightarrow 3')$
1F	CAAAACTA	1R	TAGTTTTG
2F	GATGGTCA	2R	TGACCATC
3F	TGGCTGTT	3R	AACAGCCA
4F	TTGCCGCA	4R	TGCGGCAA
5F	GATTATCG	5R	CGATAATC
6F	CGCCATTT	6R	AAATGGCG
7F	TTTTGCCG	7R	CGGCAAAA
8F	TTGTCACC	8R	GGTGACAA
9F	CATCAAAG	9R	CTTTGATG

*P < 0.05, **P < 0.01 vs. $H_2O_2 + H_2O$ (Tukey's test)

図3 H_2O_2 を曝露したCaco-2細胞におけるODNのIL-8遊離抑制作用

4.2. IBDモデルマウスを用いたODNの抗炎症効果の検 討

DSSの投与により、DAIは4日目以降に経日的に増加した。7Fの経口投与は、6日目および7日目において、DSSによるDAIの増加を有意に抑制した(図 4 (A))。DSS投与7日目に摘出した大腸において、DSSを投与したマウスでは、大腸の短縮とMPO活性の増加が観察された。7F、7R、8Fの経口投与は、DSSによる大腸の短縮を有意に抑制したが(図 4 (B))DSSによるMPO活性の増加は、7Fのみが抑制した(図 4 (C))。1Fの経口投与は、DSSによる大腸の短縮、MPO活性の増加に影響を与えなかった。さらに、炎症誘発因子であるMIP-2、iNOS、

COX-2 mRNAの大腸における発現量を測定した結果、DSSの投与により、すべての発現量が増加したが、7Fを経口投与した場合、MIP-2、iNOS、COX-2 mRNAの発現量は、7Fを投与しなかった場合と比較して、それぞれ0.44倍、0.42倍、0.44倍に抑制された(図 5 (A)-(C))。一方、1F、7R、8Fの経口投与は、これらのmRNA発現量に影響を与えなかった。以上の結果、7FがDSS誘発性大腸炎マウスの症状を軽減することが分かった。

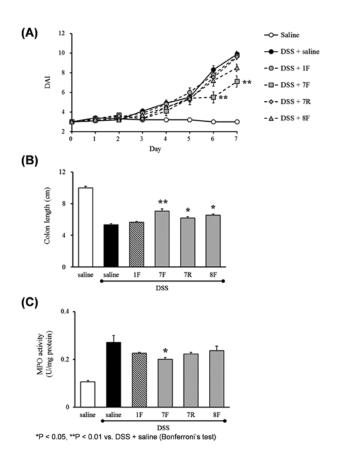


図4 ODNによるIBDモデルマウスの大腸炎症状軽減作用

5. 総括

本研究において、抗炎症作用を持つ乳酸菌 Lactobacillus casei (Lc) のゲノムDNAから、抗炎症作 用を示すODNを特定し、ODNの大腸炎の予防・治療効 果を検討した。

まず、LcのゲノムDNAライブラリーを作製し、100 個のプラスミドDNAを選択した。選択したプラスミドDNAの中から、抗炎症作用を持つODNを、 H_2O_2 を用いたCaco-2細胞による $in\ vitro$ 炎症誘発モデルを使用してスクリーニングを行い、14種類のODNが抗炎症作用を示すことが分かった。また、その中で、5'-TTTTGCCCG-3'($ODN\ 7F$)が、DSS誘発性IBDモデルマウスにおいて、DAIの増加や大腸短縮の抑制、および炎症性サイトカインの発現を抑制し、大腸炎の症状を軽減することが分かった。

以上の結果より、乳酸菌LcのゲノムDNAから特定されたODNの7Fは新たなIBD予防・治療薬となることが期待される。

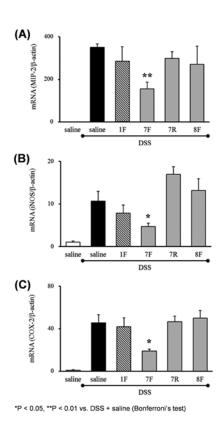


図5 DSSを投与したマウス大腸における7FのMIP-2 (A)、iNOS(B)、COX-2 (C) mRNA発現抑制作用

【業績一覧】

〔雑誌論文〕

- ① Hiramatsu Y, Satho T, Hyakutake M, Irie K, Mishima K, Miake F, Kashige N, The antiinflammatory effects of a high-frequency oligodeoxynucleotide from the genomic DNA of Lactobacillus casei. International Immunopharmacology 2014, 23(1):139-47. 查読有
- ② Hiramatsu Y, Satho T, Irie K, Siimura S, Okuno T, Sharmin T, Uyeda S, Fukumitsu Y, Nakashima Y, Miake F, Kashige N. Differences in TLR9-dependent inhibitory effects of H2O2-induced IL-8 secretion and NF-kappa B/I kappa B-alpha system activation by genomic DNA from five Lactobacillus species. Microbes Infect., 2013, 15(2):96-104. 查読有

〔学会発表〕

① Hiramatsu Y, Satho T, Irie K, Shiimura S, Nakashima Y, Miake F, Carpino N, Kashige N, Oligodeoxynucleotide 5'-TTTTGCCG-3' from *Lactobacillus casei* inhibits intestinal inflammation

World Biotechnology Congress 2013 2013年6月 Boston, USA

② 椎村翔太, 平松征洋, 佐藤朝光, 入江圭一, 宇高彩奈, 上田紗織, 中島幸彦, 鹿志毛信広, 見明史雄, 乳酸菌 ゲノムDNA由来の抗炎症作用を持つオリゴデオキ シヌクレオチドの特定 第29回日本薬学会九州支部 大会 2012年12月 熊本

【謝辞】

本研究(の一部)は、福岡大学研究推進部の研究経費 (課題番号:127007)によるものであり、助成に感謝申 し上げます。

本稿を終わるにあたり、本研究の遂行に御協力頂いた、 国立感染症研究所の平松征洋博士、本学薬学研究科博士 課程大学院生の上田紗織女史ならびに百武美香女史に感 謝の意を表します。