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Background: Kawasaki disease (KD) is the most common systemic vasculitis of unknown etiology in children, and
can cause the life-threatening complication of coronary artery aneurysm. Although a novel treatment strategy for
patients with KD-caused vascular lesions is eagerly awaited, their molecular pathogenesis remains largely un-
known. c-Jun N-terminal kinase (JNK) is a signaling molecule known to have roles in inflammation and tissue re-
modeling. The aim of this study was to elucidate significant involvement of JNK in the development of vascular
lesions in a mouse model of KD.
Methods and results: We injected Candida albicans cell wall extract (CAWE) into 4-week-old C57BL/6 mice. Mac-
roscopically, we found that CAWE caused the development of bulging lesions at coronary artery, carotid artery,
celiac artery, iliac artery and abdominal aorta. Histological examination of coronary artery and abdominal aorta
in CAWE-treated mice showed marked inflammatory cell infiltration, destruction of elastic lamellae, loss of me-
dial smooth muscle cells and intimal thickening, which are similar to histological features of vascular lesions of
patients with KD. To find the role of JNK in lesion formation, we evaluated the effects of JNK inhibitor,
SP600125, on abdominal aortic lesions induced by CAWE. Interestingly, treatment with SP600125 significantly
decreased the incidence of lesions and also protected against vascular inflammation and tissue destruction his-
tologically, compared with the placebo treatment.
Conclusions: Our findings suggest that [NK is crucial for the development of CAWE-induced vascular lesions in
mice, and potentially represents a novel therapeutic target for KD.

© 2014 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

treated with high-dose y-globulin, the current standard therapy for
acute-stage KD [3,5], develop coronary artery aneurysms and remain at

Kawasaki disease (KD), which is the most common systemic vasculitis
with unknown origin in childhood, causes inflammation of coronary
arteries, leading to development of aneurysms, a life-threatening compli-
cation [1-4]. About 25% of children with untreated KD and 5% of those
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risk of myocardial infarction and sudden death until later in life [3,6,7].
Therefore, the need for novel therapeutic targets in KD-caused vascular
lesions is critical. However, the pathogenesis of KD is not fully understood.

Some experimental studies of KD that used mouse models have
provided potential therapeutic targets for coronary artery vasculitis. In
these studies, Lactobacillus casei cell wall extract (LCWE) and Candida
albicans cell wall extract (CAWE) were commonly used to induce a
mouse model of coronary arteritis that mimics that of human KD
[8-11]. For example, Lee et al. demonstrated the crucial role of
interleukin-13 in LCWE-induced coronary arteritis in mice [10].
Martinez et al. reported the role of chemokine receptor-2 in CAWE-
induced coronary arteritis in mice [12]. Oharaseki et al. also used
CAWE-induced coronary arteritis in mice to examine the role of tumor
necrosis factor-o [11]. Although extensive histopathological analyses
were conducted to evaluate inflammation in these studies, we needed to
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establish a new experimental model system, to enable both macroscopic
and histopathologic evaluation of KD-caused vascular lesions.

All aneurysmal lesions, whatever their etiology, share common
pathologic hallmarks, including inflammation and proteolytic deg-
radation of the extracellular matrix [13-16]. Excessive matrix prote-
olysis mediated by matrix metalloproteinases (MMPs), notably
MMP-9, is considered a common and critical step during lesion de-
velopment [13,15,17,18]. In fact, MMP-9 is upregulated in coronary
lesions of the LCWE-induced mouse model [19] and also in patients
with KD [20]. Inhibition of MMP-9 had been shown to prevent elas-
tin degradation in the LCWE-induced mouse model, but it had no ef-
fect on inflammatory infiltration [19], which suggests that upstream
signaling molecules would be a desirable target. We then focused on
c-Jun N-terminal kinase (JNK), a stress-activated signaling molecule,
which regulates MMP-9 and various proinflammatory cytokines
[21,22]. SP600125, a specific JNK inhibitor, has been shown to
completely block development of abdominal aortic aneurysm in
mice, accompanied by reduction of MMP-9 and macrophage infiltra-
tion, and preservation of elastic lamellae [23].

We hypothesized that inhibiting JNK would attenuate development
of vascular lesions in a mouse model of KD. Initially, we successfully
created a mouse model system that allowed us to assess development
of the lesions that are compatible with those in KD. Consequently, we
showed that pharmacologic inhibition of JNK effectively prevented
development of CAWE-induced lesions in mice.

2. Methods
2.1. CAWE preparation

Candida albicans cell wall extract (CAWE) was prepared from
Candida albicans standard strain SC5314 by modifying the method de-
scribed previously [9]. Briefly, Candida albicans SC5314 stock culture
was stored at — 80 °C, then incubated at 37 °C for 48 h aerobically on
yeast peptone dextrose agar (10 g yeast extract, 20 g peptone, 20 g glu-
cose and 20 g agar per liter). Yeast cells were harvested (about 600 mg
wet weight/plate) from agar plates using a scraper and washed three
times with distilled water. An extract was obtained by boiling yeast cells
for 2 h with 0.5 M KOH (200 mg wet weight of yeast cells/ml). After alkali
neutralization in pH7.2 and dialysis against water for 3 days, the
extracted material was precipitated with ethanol. The precipitate, about
4% against wet weight yeast cells, was suspended in phosphate-buffered
saline (PBS) and adjusted to a final concentration of 100 mg/ml.

2.2. Mice

Four-week-old C57BL/6 N male mice were purchased from Kyudo
Co., Ltd. (Tosu, Saga, Japan). Mice were kept in plastic cages (5 per
cage) under pathogen-free conditions in a room at 24+2.5 °C and
55%45% relative humidity under a 12:12-h light-dark cycle. Mice
were given free access to standard food and water throughout the
experiments. All experiments were performed in conformity with
the Guide for the Care and Use of Laboratory Animals published by
the United States National Institutes of Health. The protocols
were approved by the Laboratory Animal Care and Use Committee
of Fukuoka University (#116479).

2.3. Induction of vascular lesions in mice

To induce vascular lesions, 4-week-old C57BL/6 male mice were
injected intraperitoneally (i.p.) with 4 mg of CAWE for 5 consecutive
days every 4 weeks for 2 cycles; and then euthanized with overdoses
of sodium pentobarbital (100 mg/kg, i.p.) at 4, 8 or 12 weeks after the
second CAWE cycle (Fig. 1A). For whole-body perfusion fixation, 4%
paraformaldehyde in PBS was perfused at physiological pressure. After
perfusion fixation, the hearts and the whole aortas with branches

were exposed and excised for morphometric and histological analyses.
Additionally, in some experiments, a mixture of 10% India ink/4% gelatin
in PBS was injected into aortic root to visualize coronary arteries.

2.4. Inhibition of JNK in mice

Custom-made pellets containing JNK-specific inhibitor SP600125
(30 mg/kg/day) and control placebo pellets were purchased from
Innovative Research of America (Sarasota, FL, USA). For pellet implanta-
tion, 4-week-old C57BL/6 male mice were anesthetized with sodium
pentobarbital (40 mg/kg, i.p.). Anesthesia was monitored by periodic
observation of respiration and pain response. Pellets were implanted
in subcutaneous pockets created on the backs of the mice before starting
CAWE administration as described above. The mice were euthanized as
described, at 4 weeks after the second CAWE cycle (Fig. 1B). After
whole-body perfusion fixation as described, hearts and whole aortas
with branches were excised, photographed for morphometric analysis,
and analyzed histologically. Photographs of aortas were used to deter-
mine maximum external aortic diameters.

2.5. Histological and immunohistochemical analyses

Paraffin-embedded sections were stained with hematoxylin/eosin
(HE) and elastica-van Gieson (EVG) for histological analysis. For EVG
staining, sirius red was used instead of acid fuchsin. Sections were also
probed with antibodies raised against appropriate antigens for immu-
nohistochemistry, as described previously [24]. We detected tenascin-C
(TN-C), ae-smooth muscle actin (ot-SMA), Mac-3 and activated JNK by
probing sections with rabbit polyclonal anti-TN-C antibody [25],
mouse anti-smooth muscle a-actin antibody (Dako, Glostrup,
Denmark), rat anti-Mac-3 antibody (BD Biosciences, San Jose, CA,
USA) and rabbit polyclonal anti-phosphorylated JNK (p-JNK) anti-
body (Promega, Fitchburg, WI, USA), respectively. The sections
were visualized with an avidin-biotin-peroxidase complex staining
kit (Vector Laboratories, Burlingame, CA, USA) and colorized with
diaminobenzidine (DAB) chromogen. For double immunostaining,
sections were incubated with anti-p-JNK antibody, visualized with
a peroxidase complex staining kit and DAB, and incubated with
fluorescein isothiocyanate-conjugated anti-oa-SMA (Sigma, St.
Louis, MO, USA) or anti-Mac-3 and Alexa Fluor 546 goat anti-rat
IgG (Molecular Probes, Eugene, OR, USA). Slides were observed
under a fluorescent/differential interference contrast (DIC) micro-
scope (BH2, Olympus, Tokyo Japan). Immunofulorescent signals
were superimposed on DIC images.

2.6. Statistical analysis

Data are expressed as mean4-standard deviation (SD). Statistical
analyses were performed with the Prism 5.0d statistical program
(GraphPad Software, La Jolla, CA, USA). We used Fisher’s exact test to
compare incidence of aneurysm development. We used the Mann
Whitney test to compare maximal aortic diameters between experi-
mental groups. A value of P<0.05 was considered statistically significant.

3. Results
3.1. Development of arterial and aortic lesions induced by CAWE

To create a mouse model of KD-related lesions, we injected into
4-week-old C57BL/6 male mice with 4 mg of CAWE for 5 consecu-
tive days for 2 cycles. Four to 12 weeks later, we found that a con-
siderable number of mice developed bulging lesions and that
these lesions were created at abdominal aorta, iliac artery, coronary
artery, carotid artery, and celiac artery (Fig. 2A-D). Some mice had
multiple lesions with a “string of beads” appearance (Fig. 2D). All
of the lesions looked pearly white, which indicated that they were

Please cite this article as: Yoshikane Y, et al, JNK is critical for the development of Candida albicans-induced vascular lesions in a mouse model of
Kawasaki Disease, Cardiovasc Pathol (2014), http://dx.doi.org/10.1016/j.carpath.2014.08.005



http://dx.doi.org/10.1016/j.carpath.2014.08.005

Y. Yoshikane et al. / Cardiovascular Pathology xxx (2014) xXX-xxx 3

A i.p. i.p.
CAWE CAWE
5 days 5 days
OPOOCO OO8FF
\’/4wks\"/ Sacrifice Sacrifice Sacrifice
R Gl
C57BL/6 . g 'l 'I ’l
rasle mies Week 0 Week 4 Week 8 Week 12
Awks old =Ty (m=7) (n=7)
B i.p. i.p.
CAWE CAWE
5 days 5 days
OOOOO OOFFF  saciiice
2 wks\"/ Week 4
A
C57BL/6 ’l
male mice SP6000125 or Placebo
4wks old

Fig. 1. Experimental design. A: To develop a mouse model of Kawasaki disease, Candida albicans wall extract (CAWE, 4 mg/body/day) was administered intraperitoneally to 4-week-old
C57BL/6 male mice for 5 consecutive days every 4 weeks for 2 cycles. The mice were euthanized at 4, 8 or 12 weeks after the second administration of CAWE. B: To examine the role of JNK
during development of CAWE-induced lesions, the mice were treated with SP600125 (30 mg/kg/day), pharmacological inhibitor of JNK, or placebo for the entire period of the experiment.

The mice were euthanized at 4 weeks after the second administration of CAWE.

accompanied with fibrotic thickening of vessel walls. Most of the
lesions were fusiform. These macroscopic observations suggested
that these might be aneurysmal lesions. We did not find

Fig. 2. Development of arterial and aortic lesions induced by CAWE. Representative
photographs show the arterial and aortic lesions induced by Candida albicans wall ex-
tract (CAWE) in mice, as indicated by yellow arrows. A: Lesion of the left coronary ar-
tery (It CA), which was visualized by India ink perfusion. B: Lesion of the right
common carotid artery (rt CCA). C: Lesion of the pararenal abdominal aorta (AA) at
the level of the left renal artery (It RA). D: Lesions of the infrarenal abdominal aorta
and the left common iliac artery (It CIA).

thrombotic occlusion or rupture of aneurysm during the experi-
mental period.

Coronary artery lesions were observed near the orifice of the left
main coronary artery only in some CAWE-treated mice (Fig. 3A-C).
Coronary arteries of untreated control mice showed preserved elastic
lamellae, ®-SMA™ medial smooth muscle cells, and few inflammatory
cells. In contrast, dilated coronary arteries of CAWE-treated mice
showed marked inflammatory cell infiltration into all arterial wall
layers, straightening and fragmentation of elastic lamellae, disappear-
ance of a-SMA™ cells in the media, and intimal thickening (Fig. 3B and
C). Fibrinoid necrosis was not seen in the experimental mice. These find-
ings are similar to pathological features of KD vascular lesions [26]. We
also found TN-C to be greatly expressed, associated with cellular infiltra-
tion, medial destruction and intimal hyperplasia in the involved arterial
walls of CAWE-treated mice (Fig. 3B and C). TN-C is known to be highly
upregulated in the vascular system during inflammatory responses, and
its expression could be a marker for active tissue remodeling [24].

3.2. Temporal pattern of development of CAWE-induced lesions

We next investigated whether the temporal pattern of pathologi-
cal processes in CAWE-treated artery accords with that in KD. The
incidences of coronary artery lesions were 0.0% (0/7 mice), 14.3%
(1/7 mice) and 14.3% (1/7 mice) at 4, 8 and 12 weeks, respectively,
after CAWE treatment. In the medium-sized vessels, the incidences of
arterial lesions (iliac, coronary, carotid and celiac lesions) were 0.0%
(0/7 mice), 42.9% (3/7 mice) and 57.1% (4/7 mice) at 4, 8 and
12 weeks, respectively, after the CAWE treatment (Fig. 4A). Thus, the
incidences of lesions in medium vessels were modestly high at 8 and
12 weeks after CAWE treatment, but the incidence of coronary artery
lesions was not enough for temporal analysis. Fortunately, the
incidences of abdominal aortic lesions were 42.9% (3/7 mice), 57.1%
(4/7 mice) and 85.7% (6/7 mice) at 4, 8 and 12 weeks, respectively,
after CAWE treatment (Fig. 4A). By the definitions adopted by the
2012 International Chapel Hill Consensus Conference on the Nomencla-
ture of Vasculitides (CHCC2012), KD is classified as part of medium ves-
sel vasculitis (MVV). However, as the CHCC2012 definitions also note
that aorta and large arteries may be affected [27,28], we used abdominal
aortic lesions in the CAWE-treated mice for further studies.

Please cite this article as: Yoshikane Y, et al, JNK is critical for the development of Candida albicans-induced vascular lesions in a mouse model of
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Fig. 3. Development of coronary artery lesions induced by CAWE. A: Representative photographs show the left coronary artery (It CA) originating from the aorta (Ao) in untreated mice
(Control) and mice treated with Candida albicans wall extract (CAWE-treated). The left coronary artery was visualized by India ink perfusion. Yellow arrows indicate the coronary artery
lesion induced by CAWE. B: Representative histological and immunohistochemical stains are shown for the aorta (Ao) and the left coronary artery of the control and the CAWE-treated
mice. C: Representative histological and immunohistochemical stains are shown for enlarged images of the areas within the red squares in the panel B. Elastica van-Gieson (EVG) stain
depicts elastin network (black), collagen fibers (red), and muscles (yellow). Hematoxylin/eosin (HE) stain depicts cell nuclei (blue-black). Levels of protein expression and localization
of tenascin-C (TN-C) and a-smooth muscle actin (o-SMA) are indicated by brown staining, [: intima, M: media, A: adventitia.

Histological sections of abdominal aortic lesions in CAWE-treated
mice also showed similar changes to those of the coronary artery lesions
(Fig. 4B and C). At 4 weeks after the CAWE treatment, we observed
>marked infiltration of inflammatory cells, including dominant macro-
phages and lymphocytes, into all layers of the aortic walls. Especially,
accumulation of inflammatory cells associated with increased collagen
fibers resulted in extensive thickening of the adventitia around the
aorta. Although thickness of media and multilayered a-SMA™ smooth
muscle cells appeared to be sustained, elastic lamellae began to show
straightening and fragmentation. TN-C was widely expressed from inti-
ma to adventitia. Inflammatory cell infiltration continued until 8 weeks
and gradually decreased at 12 weeks. Destruction of elastic lamellae
and thinning of the media progressed until 12 weeks. The a-SMA™
smooth muscle cells completely disappeared in media by 8-12 weeks,
whereas neointima consisting of numerous «-SMA™ cells was formed
and thickened, leading to stenosis at 12 weeks. TN-C staining was still
intense at 8 and 12 weeks, but localized in the thickened intima and
the residual media (Fig. 4B and C).

To ascertain if JNK is activated in vascular cells during the
development of CAWE-induced lesions, we also examined the tissue
localization of p-JNK. Aortic walls of untreated control mice showed
few JNK-activated cells. In contrast, dramatic activation of JNK was ob-
served throughout all layers of aortic walls at 4 weeks after CAWE treat-
ment. JNK activation was mostly detected in a-SMA™ smooth muscle
cells in the media and the thickened neointima and macrophages
were noted in all layers of aortic lesions (Fig. 5A and B).

3.3. Preventive effect of JNK inhibition on development of CAWE-
induced lesions

We next investigated whether JNK activation is necessary for develop-
ment of CAWE-induced lesions. To this end, we subcutaneously im-
planted the pellets, which were designed to release JNK-specific
inhibitor SP600125 (30 mg/kg/day) over the experimental period, in
CAWE-treated mice (SP600125 group, n=10). Placebo pellets were also
used in CAWE-treated mice as controls (placebo group, n=20). Morpho-
metric analyses of the aortas after perfusion fixation showed that 13
(65.0%) of 20 mice developed abdominal aortic lesions, which reached a
certain size and were occasionally accompanied by a “string of beads” ap-
pearance, in the placebo group. In contrast, in the SP600125 group, only
one (10.0%) of 10 mice developed a small-sized lesion (Fig. 6A and B).
Thus, treatment with SP600125 dramatically decreased the incidence of
aortic lesions induced by CAWE (P<0.01 compared with the placebo
group; Fig. 6B), and also significantly reduced the maximum external di-
ameter of the abdominal aorta (P<0.01 compared with the placebo
group; Fig. 6C). Histological analyses showed that development of lesions
was accompanied by marked cellular infiltration into all layers of the aor-
tic wall, extensive destruction of the elastic lamellae in the media, and
some intimal thickening in the placebo group. Significant macro-
phage infiltration and TN-C expression were also extended across
all layers of the wall. In sharp contrast, most mice in the
SP600125 group showed a few inflammatory cells and preserved
elastic lamellae (Fig. 6D). These results indicate that treatment
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Fig. 4. Development of aortic lesions induced by CAWE. A: Mice treated with Candida albicans wall extract (CAWE) developed aortic and arterial lesions. Incidences of aortic and other
arterial lesions are shown at 4, 8 or 12 weeks after administration of CAWE. B: Representative histological and immunohistochemical stains are shown for control aorta from untreated
control mice and aortic lesions from the mice sacrificed at 4, 8 or 12 weeks after CAWE treatment. C: Representative histological and immunohistochemical stains are shown for enlarged
images of aortic lesions from the CAWE-treated mice. Hematoxylin/eosin (HE) stain depicts cell nuclei (blue-black). Elastica van-Gieson (EVG) stain depicts elastin network (black), col-
lagen fibers (red), and muscles (yellow). Levels of protein expression and localization of tenascin-C (TN-C), a-smooth muscle actin (a-SMA) and Mac-3, a macrophage surface glycopro-
tein, are indicated by brown staining. L: lumen, [: intima, M: media, A: adventitia.

with SP600125 protects against CAWE-induced vascular inflam- undamaged, in the SP600125 group. This finding indicates that me-
mation and tissue destruction, resulting in suppressed develop- dial smooth muscle cells were not completely normal in the
ment of lesions. More interestingly, we also observed TN-C to be SP600125 group, and might be under certain pathological condi-
significantly expressed only in the medial layer, which appeared tions (convalescence, e.g.) at least 4 weeks after CAWE treatment.

Please cite this article as: Yoshikane Y, et al, JNK is critical for the development of Candida albicans-induced vascular lesions in a mouse model of
Kawasaki Disease, Cardiovasc Pathol (2014), http://dx.doi.org/10.1016/j.carpath.2014.08.005



http://dx.doi.org/10.1016/j.carpath.2014.08.005

6 Y. Yoshikane et al. / Cardiovascular Pathology xxx (2014) xXX-xxx

p-JNK

Control &

e

P B
S i e 2 MR
VI e xS 7 =

a-SMA Merge (p-JNK/a-SMA)

v

Fig. 5. ]NK activation in aortic lesions induced by CAWE. A: Representative immunohistochemical stains are shown for control aorta from untreated control mice and aortic lesions from the
mice sacrificed at 4 weeks after CAWE treatment. Localization of phosphorylated JNK (p-JNK) is indicated by brown staining. B: Representative immunohistochemical and immunofluo-
rescence stains are shown for aortic lesions after CAWE treatment. Activated JNK (p-JNK) is indicated by brown staining in differential interference contrast (DIC) images. Localization of a-
smooth muscle actin (a-SMA) positive cells or Mac-3 positive macrophages is indicated by green and red fluorescent signals, respectively. L: lumen, I: intima, M: media, A: adventitia.

4. Discussion

The present study clearly showed that pharmacologic inhibition of
JNK significantly prevented the development of CAWE-induced vascular
lesions in mice. Prior to this demonstration, we administered CAWE to
young mice and created the model system, which substantially imitated
KD-caused human artery lesions and allowed us to evaluate both
macroscopical and histopathological changes in medium-sized arteries
and the aorta. Previous imaging studies in patients with KD have
shown that coronary artery aneurysms are commonly fusiform or
spherical in shape and occasionally form multiple or complex
aneurysms, which may show a “string of beads” appearance [3,29-31].
In this study, these macroscopic characteristics were largely recapitulat-
ed in both arterial and aortic lesions of our mouse model. Histological
studies of autopsy cases with KD-caused coronary artery aneurysms
have shown inflammatory cell in filtration into all arterial wall layers,
elastic lamellae destruction and intimal thickening [26,29]. In most set-
tings, the medial layer is very thin, whereas the adventitia is thickened
by fibrous proliferation [32]. Additionally, fibrinoid necrosis is a charac-
teristic of polyarteritis nodosa, but not KD [27,33]. Our data clearly
showed that these hallmark features of KD pathology were fully recapit-
ulated in our CAWE-induced model.

Pathologic changes over time in KD-caused human coronary arterial
lesions have been studied previously. Takahashi et al. reported that in-
flammatory cells infiltrate arterial walls and lead to panvasculitis ap-
proximately 10 days after onset of KD [26]. As inflammation
progresses, elastic lamellae and smooth muscle cells become severely
damaged, eventually resulting in aneurysm formation. Cellular infiltra-
tion persists until about 4 weeks after KD onset, after which the acute
inflammatory stage gradually transitions into the convalescent stage.
Thereafter, in most patients, coronary arteries tend to develop full cir-
cumferential intimal thickening, which can cause thrombotic occlusion
[2,26]. These temporal aspects of KD arterial lesions were largely
reproduced in our CAWE-induced model.

Obviously, our model and human KD differ in some respects. Partic-
ularly the highest incidence of vascular lesion is found in coronary
arteries in humans [26,27], whereas incidence of aortic lesions was
higher than that of coronary artery lesions in our model. However, the
size of children’s coronary arteries roughly corresponds to that of
mouse aorta rather than mouse coronary artery. Therefore, mouse
aorta may mimic human coronary artery in the hemodynamic

environment, which potentially affects aneurysm progression [13,34].
In addition, human KD can cause thrombotic occlusion or rupture (a
rare complication) in arterial aneurysms [4,26], although neither was
observed in this study, probably because of limited period of observa-
tion as well as limited number of animals.

KD is linked to various pathogenic agents, including many bacteria
and viruses [35]. Many epidemiological findings have pointed out that
KD seems like an infectious disease [35,36]. Although the pathogen
that triggers human KD has not yet been identified, previous studies,
as well as our current study, provide evidence that some bacteria-
derived components, such as CAWE and LCWE, can trigger initial sys-
temic inflammation and subsequent local vascular inflammation
[8-11,15]. Probably, the systemic inflammation is initiated by recogni-
tion of pathogen-associated molecular patterns (PAMPs), which are
displayed by CAWE and LCWE; inflammation is then mediated by re-
lease of type I interferons and inflammatory cytokines such as tumor
necrosis factor (TNF) and interleukin-1 (IL-1) [37,38]. Detection of
PAMPs also activates pathogen-specific T and B cells that enhance the
inflammatory response, or potentially leads to activation of T and
B cells specific for antigens that cross-react with self-antigens [38].
In Candida albicans infection or CAWE administration, recognition of
Candida albicans-associated PAMPs through interaction with pattern
recognition receptors (PRRs) such as Toll-like receptors and C-type lec-
tin receptors including dectin-1 and dectin-2, initiates production of cy-
tokines and differentiation of T helper-1 (Th1) and Th17 cells [39-41].
These early immune responses are known to involve activation of
mitogen-activated protein kinases, including JNK [37,42]. However,
based on our observation that TN-C was obviously expressed even in
vessel walls of the SP600125-treated mice, we suspect that pharmaco-
logic inhibition of JNK protects against vascular inflammation and lesion
formation rather than against the initial immune responses to CAWE.

The mechanism by which initial systemic immune responses to
PAMPs lead to the subsequent vascular inflammation is not well under-
stood. Superantigens derived from bacteria and viruses may be involved
in this process [15,43,44]. In addition, molecular mimicry that occurs
through cross-reactive recognition between a microbial antigen/MHC
and a self-antigen/MHC complex could be also responsible for this
onset of vasculitis [38]. In the initiation of vasculitis, as proposed previ-
ously, inflammatory cells such as macrophages, neutrophils and T cells
are recruited to the vascular walls, and various cytokines/chemokines
are released. Coincidentally, endothelial cells and vascular smooth
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Fig. 6. Effect of JNK inhibition on development of CAWE-induced lesions. A: Representative photographs show the aortas of the mice treated with SP600125, JNK inhibitor, or
placebo at 4 weeks after administration of Candida albicans wall extract (CAWE). B: Incidences of aortic lesions induced by CAWE are shown for the mice treated with
SP600125 or placebo. C: Maximum external diameters of abdominal aortas are shown for the CAWE-treated mice with SP600125 or placebo. Data are mean+SD. * P<0.01
compared to placebo. D: Representative histological and immunohistochemical stains are shown for the abdominal aortas of the CAWE-treated mice with SP600125 or placebo.
Hematoxylin/eosin (HE) stain depicts cell nuclei (blue-black). Elastica van-Gieson (EVG) stain depicts elastin network (black), collagen fibers (red), and muscles (yellow).
Levels of protein expression and localization of tenascin-C (TN-C) and Mac-3 are indicated by brown staining. L: lumen, I: intima, M: media, A: adventitia.

muscle cells are also stimulated to produce cytokines/chemokines,
which augment inflammatory cell accumulation [15,40]. During these
events, JNK can be activated by stimulation with proinflammatory cyto-
kines such as TNF and IL-1 in various cells, including vascular smooth
muscle cells and macrophages [23,37]. Activation of JNK also
upregulates the genes that encode proinflammatory cytokines such as
TNF and IL-1 [21,45,46], thus enhancing these inflammatory responses.
A role for JNK in prolongation of vascular inflammation has also been
suggested [34,47]. Persistent activation of JNK then contributes to
prolonged chronic inflammation and eventually shifts the balance of ex-
tracellular matrix metabolism toward degradation by upregulating
MMP activity, thereby leading to development of aneurysmal lesions
[22,23]. In addition, JNK may also enhance lesion formation by reducing
extracellular matrix biosynthetic enzymes including lysyl oxydase [45]

and by mediating apoptosis of vascular smooth muscle cells [48]. More-
over, JNK is reportedly involved in intimal thickening [49], which is
typically accompanied by KD-related lesions. Taken together, these
data suggest that JNK activation accelerates not only vasculitis but also
KD-caused aneurysmal lesions, through multiple mechanisms. We
have demonstrated, in fact, that inhibiting JNK suppresses inflammatory
cell infiltration, destruction of elastic lamellae and intimal thickening,
resulting in effective prevention of lesion formation in our CAWE-
induced model.

In conclusion, this study has shown, for the first time, that JNK
activation is critical to development of CAWE-induced vascular lesions
in mice, and provided novel insights into the role of JNK in the
pathogenesis of KD-caused lesion formation. Although further studies
are needed to determine the efficacy and safety of JNK inhibition in

Please cite this article as: Yoshikane Y, et al, JNK is critical for the development of Candida albicans-induced vascular lesions in a mouse model of
Kawasaki Disease, Cardiovasc Pathol (2014), http://dx.doi.org/10.1016/j.carpath.2014.08.005



http://dx.doi.org/10.1016/j.carpath.2014.08.005

8 Y. Yoshikane et al. / Cardiovascular Pathology xxx (2014) XXX-XXx

KD, our findings suggest that JNK could be a novel therapeutic target in
patients with vascular lesions and those at high risk for aneurysms due
to nonresponsiveness to current standard therapy.
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