
Tomonoh et al. 1 

 

The Kick-In System: A Novel Rapid Knock-In 

Strategy 

 

Yuko Tomonoh1, Masanobu Deshimaru3, Kimi Araki4, Yasuhiro Miyazaki3, Tomoko Arasaki3, 

Yasuyoshi Tanaka3, Haruna Kitamura3, Fumiaki Mori5, Koichi Wakabayashi5, Sayaka Yamashita6, 5 

Ryo Saito6, Masayuki Itoh7, Taku Uchida2, Junko Yamada8, Keisuke Migita8, Shinya Ueno8, Hiroki 

Kitaura9, Akiyoshi Kakita9, Christoph Lossin10, Yukio Takano6, Shinichi Hirose1,2 

 

1Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan 

2Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka  10 

University, Fukuoka, Japan 

3Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka, Japan 

4Division of Developmental Genetics, Institute of Resource Development and Analysis, 

Kumamoto University, Kumamoto, Japan 

5Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, 15 

Japan 

6Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka 

University, Fukuoka, Japan  

7Department of Mental Retardation and Birth Defect Research, National Institute of 

Neuroscience, Kodaira, Japan  20 

8Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, 

Japan 



Tomonoh et al. 2 

 

9Brain Research Institute, Niigata University, Niigata, Japan 

10Department of Neurology, School of Medicine, University of California Davis, Sacramento, 

California, United States of America 25 

 

Correspondence 

Prof. Shinichi Hirose 

Department of Pediatrics, School of Medicine, Fukuoka University 

7-45-1 Nanakuma, Jonan-ku 30 

Fukuoka 814-0180, Japan 

E-mail: hirose@fukuoka-u.ac.jp 

 

 

Counts 35 

Title characters (w/ spaces): 44 

Short title (w/ spaces):  25 

Abstract:    269 

Number of Figures:   7 

Number of Tables:   240 

mailto:hirose@fukuoka-u.ac.jp


Tomonoh et al. 3 

 

ABSTRACT  

Knock-in mouse models have contributed tremendously to our understanding of human 

disorders. However, generation of knock-in animals requires a significant investment 

of time and effort. We addressed this problem by developing a novel knock-in system that 

circumvents several traditional challenges by establishing stem cells with acceptor 45 

elements enveloping a particular genomic target. Once established, these acceptor 

embryonic stem (ES) cells are efficient at directionally incorporating mutated target 

DNA using modified Cre/lox technology. This is advantageous, because knock-ins are not 

restricted to one a priori selected variation. Rather, it is possible to generate several 

mutant animal lines harboring desired alterations in the targeted area. Acceptor ES cell 50 

generation is the rate-limiting step, lasting approximately 2 months. Subsequent 

manipulations toward animal production require an additional 8 weeks, but this delimits 

the full period from conception of the genetic alteration to its animal incorporation. 

We call this system a “kick-in” to emphasize its unique characteristics of speed and 

convenience. To demonstrate the functionality of the kick-in methodology, we generated 55 

two mouse lines with separate mutant versions of the voltage-dependent potassium channel 

Kv7.2 (Kcnq2): p.Tyr284Cys (Y284C) and p.Ala306Thr (A306T); both variations have been 
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associated with benign familial neonatal epilepsy. Adult mice homozygous for Y284C, 

heretofore unexamined in animals, presented with spontaneous seizures, whereas A306T 

homozygotes died early. Heterozygous mice of both lines showed increased sensitivity 60 

to pentylenetetrazole, possibly due to a reduction in M-current in CA1 hippocampal 

pyramidal neurons. Our observations for the A306T animals match those obtained with 

traditional knock-in technology, demonstrating that the kick-in system can readily 

generate mice bearing various mutations, making it a suitable feeder technology toward 

streamlined phenotyping. 65 
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INTRODUCTION  

Knock-in mouse models are irreplaceable in research investigating heritable disease, 

but their production is costly and time-consuming. Furthermore, each model is committed 

to examining only a single variation; any additional genetic alteration, even if situated 80 

in the very vicinity of a previously examined change, requires the development of a new, 

separate animal line. Generating multiple knock-ins is therefore impossible, because a 

single animal line necessitates months of bench and colony work. Experiments comparing the 

effects of neighboring variations with possibly diverse outcomes are simply never started 

because it would require too many resources. 85 

To address this problem, we revised the knock-in method to allow for the unique 

introduction of desired genetic alteration within a target area as illustrated in Figure 

1. We call the system a “kick-in” to emphasize its unique characteristics in terms of 

speed and convenience. The kick-in method overcomes aforementioned limitations and offers 

knock-in technology to research requiring diverse genetic variations within a target region. 90 

To provide proof-of-principle for the kick-in strategy, we generated two mouse lines 

harboring separate genetic variations of the Kcnq2 gene (protein name: Kv7.2). 
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Missense mutations in KCNQ2, the human ortholog of Kcnq2, have been linked to seizure 

disorders including benign familial neonatal epilepsy (BFNE, OMIM #269720) [1,2]. The 

prognosis of BFNE is good, because the seizures commonly decrease within months after birth 95 

[3,4]. However, a few KCNQ2 mutations have recently been found to cause early infantile 

epileptic encephalopathy, which is a malignant epilepsy phenotype [5-7]. Therefore, KCNQ2 

mutations induce a range of epilepsy phenotypes, and our understanding of this gene is still 

limited. To validate the kick-in system and to produce a new animal model for BFNE, we 

generated mice harboring either p.Tyr284Cys or p.Ala306Thr [8]; both mutations are located 100 

in the pore region of Kv7.2. Knock-in mice bearing p.Ala306Thr have been previously 

established using conventional knock-in technology [9], which provides a suitable platform 

for comparison to our modifications. From our findings, we conclude that the kick-in is 

a suitable approach to produce several murine knock-in lines in parallel. We furthermore 

introduce a novel animal model for BFNE, which will help advance our understanding of 105 

infantile epilepsy.  

  

http://omim.org/entry/269720
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MATERIALS and METHODS 

Ethics statement 

All animal procedures adhered to the Guidelines of the Committee for Animal Care and 110 

Use of Fukuoka University, Kumamoto University, Hirosaki University, the National Institute 

of Neuroscience, and Niigata University. The study was approved by the Ethical Committee 

for Animal Experiments of Fukuoka University, Kumamoto University, Hirosaki University, 

The National Institute of Neuroscience, and Niigata University. 

Vector construction 115 

The structures of the targeting vector and mutation vectors are shown in Figure 2; 

detailed sequence information has been deposited in GenBank records AB535096 and AB535097 

(http://www.ncbi.nlm.nih.gov/nuccore/AB535096 and 

http://www.ncbi.nlm.nih.gov/nuccore/AB535097). 

Targeting vector: Briefly, a 7.5-kb murine Kcnq2 genomic fragment spanning from the 120 

end of intron 1 to the beginning of intron 7 was PCR-amplified from the BAC clone 

TRPCI23-401L17 (Advanced GenoTechs, Tsukuba, Japan); the corresponding Kcnq2 reference 

sequence has the accession number NM_010611.1. The Kcnq2 fragment was 5′-fused with a 

diphtheria toxin-A (DT-A) cassette PCR-subcloned from plasmid p03; additional detail is 

http://www.ncbi.nlm.nih.gov/nuccore/AB535096
http://www.ncbi.nlm.nih.gov/nuccore/AB535097
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provided below. The resulting construct was modified to contain the lox71 sequence (Table 125 

1) 194 bp upstream of the Kcnq2 exon 6, and a neomycin-resistance (neo) cassette 265 bp 

downstream, which comprised PPGK (promoter sequence of mouse phosphor-glycerate kinase 1 

gene), a lox2272 sequence, and a PGK polyadenylation sequence (pA). The PPGK-neo cassette 

was situated in between two yeast-derived flippase (FLP) recognition target sequences (FRTs) 

to allow for its removal in a flippase-enabled background. The full construct was inserted 130 

into the multiple cloning site of pBluescript II SK+ (Stratagene, La Jolla, CA). Cells 

harboring this targeting vector DNA after homologous recombination (“acceptor ES cells”) 

were primed for genetic modification within the area enveloped by the lox71 and the 5′-FRT 

(i.e., primarily exon 6). Details regarding the restriction sites and PCR primers are 

available upon request. 135 

Mutation vectors: To construct the mutation vectors, a 0.4-kb DNA segment containing 

exon 6, ranging from lox71 to the FRT elements of the target vector, was PCR- amplified 

using loxKMR3 and FRT primers. Fused to this fragment was a puromycin-resistance cassette 

(PPGK-puro) that had been PCR-amplified from plasmid p04 to contain FRT and lox2272. The 

plasmids were inserted into pBluescript II SK+, and Cre-mediated recombination produced 140 

altered alleles, in which nucleotide substitutions c.849A>G and c.915G>A (two separate 
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mutation vectors) encoded p. Tyr284Cys and p.Ala306Thr of the mouse Kcnq2 protein, 

respectively. Details regarding the PCR conditions and primers are available upon request. 

Culture and gene manipulation of ES cells 

Feeder-free mouse ES cells of the TT2-KTPU8 strain (C57BL/6J × CBA) F1-derived 145 

wildtype ES cell [10] were seeded at 6.0 × 106 in collagen-coated 10-cm diameter dishes 

containing Glasgow minimum essential medium (GMEM; Sigma, St. Louis, MO) supplemented with 

1% fetal calf serum, 14% knockout serum replacement (Gibco, Grand Island, NY), and 1 kU/mL 

leukemia inhibitory factor (Sigma). Following 2-day incubations at 37°C in 6.5% CO2 to 

semi-confluence (1.6 × 107), the cells were washed twice with phosphate-buffered saline, 150 

resuspended in 1.6 mL of the same, and divided into two 0.8-mL aliquots. Transfections were 

performed using a Gene Pulser (BioRad, Hercules, CA) and a 4-mm gap cuvette set at 0.8 kV/3 

μF in the presence of 20 μg SacII-linearized targeting vector [11]. Transfected cells 

were expanded in G418-supplemented medium (200 μg/mL) for 9 days. Cells with randomly 

inserted target vector DNA did not survive during this time because non-homologous 155 

recombination failed to remove the diphtheria toxin-A cassette. Approximately 500 colonies 

developed, of which 144 were isolated by pipetting under a microscope, to be cultured for 

3 days. Half of these cells were suspended in DMSO-supplemented culture medium and 
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cryo-banked; the other half was used for genomic DNA extraction, followed by PCR and Southern 

analysis (Fig. 2C, D). A 0.2-kb DNA fragment corresponding to a partial segment of intron 160 

7 was used as the probe for Southern blot analysis following BglII/BspHI-digestion of genomic 

DNA, which hybridized with 4.4-kb and 3.2-kb fragments for non-recombinant and recombinant 

alleles, respectively (Fig. 2B). The PCR primers Neo-3′S (sense) and KQ2TV-3′osA 

(antisense), which were used for detection of the recombinant allele, were designed 

according to the nucleotide sequences of the 3′-end of the neomycin-resistance gene and 165 

intron 7, distal to the Kcnq2 sequence included in the targeting vector, respectively. These 

primers amplify a 1.8-kb DNA fragment by PCR only when genomic DNA containing homologous 

recombination is used as the template (Fig. 2B). 

Acceptor ES cells: insertion of mutant cassettes 

Nine out of 144 clones (6.3%) were found to have recombined as desired (“acceptor 170 

ES cells”); they were used in all subsequent manipulations. After thawing, the cells were 

expanded in 10-cm dishes to semi-confluence, and approximately 2.5 × 106 cells were 

co-transfected via electroporation (0.4 kV/125 μF) using 20 μg of uncut mutation vector 

and 10 μg of the Cre expression vector pCAGGS-cre. The cells were then cultured for 7 days 

in medium containing 2 μg/mL puromycin. From these, we isolated 12 drug-resistant colonies 175 
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for each mutant. Cassette exchange was verified by genomic DNA sequencing, following PCR 

amplification using primers whose nucleotide sequences corresponded to the 

puromycin-resistance gene and short arm, respectively, and sequencing of genomic DNA.  

Development of mutant mice 

Five clones of each Kcnq2-mutant ES cell setup were used to generate p.Tyr284Cys and 180 

p.Ala306Thr mice. To this end, we removed 2-cell stage zona pellucida cells from mouse 

embryos of the ICR line (Institute for Cancer Research), and immersed them in mutant ES 

cell suspension. After an overnight incubation to enhance the aggregation of the embryos 

and cells, the chimeric embryos were transplanted into the uteri of pseudopregnant females. 

From the resulting litter, checker-coated chimeras were mated with C57BL/6J mice to produce 185 

F1 heterozygous offspring with a single mutant Kcnq2 allele. These animals were crossed 

with an FLP recombinase-expressing strain to remove the FRT-flanked PPGK-puro cassette. The 

two resulting mouse lines containing either p.Tyr284Cys or p.Ala306Thr mutations were 

backcrossed with C57BL/6J mice over 10 generations to establish congenic strains. 

Genotyping 190 

Genomic DNA was extracted from the livers of 8-week-old male mice by standard proteinase 

K lysis and phenol extraction. A 0.4-kb region containing exon 6 was PCR-amplified (Table 
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2) and gel-extracted from a 2.0% agarose/TBE gel. Nucleotide sequences surrounding the 

mutations within the PCR products were directly determined using PCR primers and ABI-PRISM 

Big-dye terminator DNA sequencing on an ABI-PRISM 3100 DNA sequencer. 195 

Total RNAs were extracted from the whole brain, heart, lungs, liver, spleen, kidneys, 

testes, and skeletal muscle of 5-week-old male mice by using the acid 

guanidinium-phenol-chloroform method [12]. Synthesis of cDNAs from these RNAs was performed 

using PrimeScript reverse transcriptase and oligo (dT)18 primers (Takara Bio, Kyoto, Japan). 

Next, we PCR-amplified a 0.35-kb fragment surrounding the mutation using sense and antisense 200 

primers upstream and downstream of exon junctions 4/5 and 7/8 to avoid amplification of 

genomic DNA. Parts of the PCR products were subcloned into pBluescript II SK+ and 100 clones 

were selected for sequence determination. The nucleotide sequences of the PCR products and 

their plasmid clones were determined using PCR primers and automated Big-dye termination 

sequencing. 205 

Morphological studies 

To investigate expression of the KCNQ2 protein in the brain, 4-week-old Y284C 

heterozygous (n = 3) and homozygous mice (n = 3) and their wildtype male littermates (n 

= 3) were anesthetized with sodium pentobarbital (50 mg/kg, i.p.) and transcardially 
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perfused with 0.1 M phosphate-buffer followed by 4% paraformaldehyde in 0.1 M 210 

phosphate-buffer. The brains were quickly removed, immersed in the same fixative over night, 

and stored in 30% sucrose containing 0.1 M phosphate-buffer at 4°C. Vibratome sections 

(50-µm thick) were cut from the frontal cortex/striatum and hippocampus/thalamus, immersed 

in 1% H2O2 for 15 min, and blocked with 5% normal goat serum for 30 min. The sections were 

then incubated with polyclonal rabbit anti-KCNQ2 antibody (1:250, ab22897; Abcam, UK) for 215 

24 h at 4°C, followed by incubation with a biotinylated secondary antibody (1:200; Vector 

Laboratories, Burlingame, CA) for 1 h and avidin-biotin peroxidase complex (1:200; Vector 

Laboratories) for 1 h. The reaction was developed with diaminobenzidine (0.1 mg/mL) 

containing 0.0015% H2O2. For quantitative analyses, cells exhibiting somatic staining were 

defined immunopositive. In each mouse, we counted the number of immunopositive cells in 220 

layers II/III and V of the frontal cortex and expressed the results as cell number per unit 

area (1 mm2). 

Animal Behavior 

Eight to 12-week-old heterozygous Y284C, A306T, and littermate wildtype male mice were 

housed at 23 ± 2°C with a 12-h light/dark cycle; standard rodent pellets and water were 225 

provided ad libitum. 
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Open field: Each mouse was placed in the center of an empty 60 × 60 cm diameter box 

surrounded by 50-cm high, opaque walls. The exploratory activity and anxiety level of each 

animal were measured by recording the number of line crossings and spatial preference on 

the floor. 230 

Rota rod: Defects in motor function were assessed by the animals’ ability to balance 

on a 10-rpm rotating 3-cm diameter rod (Neuroscience Inc., Tokyo, Japan). Latency to fall 

served as the operational parameter with a cut-off time of 120 s. 

Hot plate: Abnormalities in pain perception were addressed by placing the mice on a 

55 ± 5°C hot plate encased by a 20-cm plexiglass cylinder. Measured parameters were the 235 

latency for the animal to lick its hind paws or to jump. 

Sleep and seizure analysis via video and electroencephalographic (EEG) monitoring 

EEG activity and behavior were monitored in 8−12-week-old Y284C homozygous (male and 

female), Y284C and A306T heterozygous mutant male mice, and their wildtype male littermates 

over 24 h. Mice were anesthetized with sodium pentobarbital (50 mg/kg; i.p.) to implant 240 

bipolar stainless steel wire electrodes (0.5-mm diameter; Biotex, Japan) into the right 

forehead (+2.0 mm anterior to bregma, +1.5 mm lateral to the midline) and over the right 

hippocampus (-2.0/+1.5 mm). Two electromyogram (EMG) leads were placed dorsally into the 
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neck, between the muscle and the skin. Following one week of surgery recovery, recordings 

of video and EEG signals continued for 24 h (Sleep Sign Version 2, Vital Recorder, Video 245 

option; KISSEI COMTEC, Japan). 

c-Fos protein expression 

c-Fos expression was analyzed to investigate the neuronal hyperexcitability of the 

newborn pups. One to 2-day old Y284C homozygotes and heterozygotes as well as their 

littermate wildtype male siblings were deeply anesthetized with an intraperitoneal 250 

injection of 75 mg/kg ketamine and 15 mg/kg xylazine. This was followed by transcardial 

perfusion with 40 mL of heparinized (1 unit/mL) 10 μM phosphate buffer and 400 mL of 4% 

paraformaldehyde in phosphate buffer. The brains were extracted, postfixed in 4% 

paraformaldehyde phosphate buffer at 4°C for 24 h, and then infused with 15% and 30% sucrose. 

This was followed by coronal sectioning to 10-μm thickness using a cryostat (Leica, Wetzlar, 255 

Germany). Protein (c-Fos) was visualized using standard avidin-biotin-horseradish 

peroxidase immunohistochemical procedures. Tissue sections were incubated overnight with 

a rabbit polyclonal anti-c-Fos antibody (1:5000; Sigma, St. Louis, MO). After washing in 

assay buffer (0.01 M Na+-phosphate), the sections were incubated in biotinylated goat 

anti-rabbit antibody (1:1000; Vector Laboratories, Burlingame, CA), which was followed by 260 
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incubation in an avidin-biotin-horseradish peroxidase solution. Diaminobenzidine (DAB, 0.2 

mg/mL in the presence of 7 mg/mL nickel ammonium sulfate) was used as the chromogen. To 

allow for direct comparison of the number of immunopositive cells in different brains, all 

brain sections from a given experimental cohort were simultaneously processed in the same 

pool of each reagent using staining net dishes (Brain Research Laboratories). Cells positive 265 

for c-Fos were counted using a computerized image analysis system (Olympus Microsuite 

Analysis 3.2; Soft Imaging System). The threshold grey level for positive cells was set 

at ~50% of the maximum grey over background. For a given brain region, 4–6 separate blinded 

counts were taken from separate sections/hemispheres and averaged. Two sections were used 

for each analysis of c-Fos immunoreactivity in the dorsal hippocampus, dentate gyrus, and 270 

somatosensory cortex. Cell counts were expressed as the number of cells per subregion (1 

µm2). 

Drug-induced seizures 

Wildtype as well as heterozygous 8 to 12-week-old male mice received 45 mg/kg 

pentylenetetrazole/saline (PTZ, i.p.). Seizures and behaviors were continuously recorded 275 

via EEG/video monitoring for a minimum of 30 min. Seizure scoring was based on a modified 

Racine scale [13]. 
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Brain slice preparation and electrophysiological recordings 

To establish the biophysical signature of wildtype and mutant mice brains, we conducted 

slice electrophysiology on 4-week and 10-week-old wildtype and Y284C mutant male mice; 280 

littermates served as controls. Slice preparation followed previously established methods 

[14]. Briefly, mice were anaesthetized with pentobarbital sodium (25 mg/kg; i.p.) and 

decapitated. The brains were transferred to chilled cutting solution bubbling with 95%/5% 

O2/CO2 and containing (in mM): 200 sucrose, 26 NaHCO3, 10 glucose, 3 KCl, 2 MgSO4, 2 CaCl2, 

and 1.4 NaH2PO4. The brains were trimmed, mounted, and cut to 350-μm thick coronal sections 285 

using a Vibratome (VIB1500; Intracel, Royston, UK; or VT1200S; Leica, Nussloch, Germany). 

This was followed by a ~1-h recovery in recording solution, which contained (in mM): 126 

NaCl, 26 NaHCO3, 20 glucose, 2.5 KCl, 2.0 MgSO4, 2.0 CaCl2, and 1.25 NaH2PO4.The temperature 

was maintained at 32°C during the recording. 

Whole-cell perforated patch recordings were obtained from CA1 pyramidal neurons with 290 

an Axon Instruments MultiClamp 700B amplifier (Molecular Devices, CA). Signals in the 

voltage-clamp was acquired at 5 kHz, low-pass Bessel filtered at 2 kHz using an Axon Digidata 

1332A digitizer (Molecular Devices), and analyzed offline using pClamp 10 (Molecular 

Devices). Borosilicate glass capillaries (World Precision Instruments, Inc.) were pulled 
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to 2.5–3.5 MΩ using a Flaming-Brown micropipette puller (PP-83; Narishige, Tokyo, Japan; 295 

or P-97; Sutter Instruments, Novato, CA). Input and series resistance values of 80–120 MΩ 

and <15 MΩ, respectively, were used as selection criteria for acceptable recordings; 

pipette capacitance was canceled using the amplifier circuitry. Amphotericin B (0.45–0.5 

mg/mL) was dissolved in pipette solution containing (in mM) 150 K-methanesulfonate, 10 Hepes, 

5 KCl, and 3 MgCl2 at pH7.28 (KOH). ACSF contained bicuculline (10 μM; Sigma) and CNQX (10 300 

μM; Sigma) to block GABAA receptor-mediated and non-NMDA receptor-mediated responses, 

respectively. Under these conditions, using animals at 4 weeks of age, the sodium and calcium 

currents are negligible, making their blockade unnecessary. Recordings of M-type K+ currents 

(IM) were acquired in voltage-clamp mode, using the peak amplitude of tail currents produced 

by voltage step from -20 mV to -40, -50, -60, and -70 mV, as previously described [14]. 305 

Data analysis 

All data are presented as means ± SEM. For parametric data, statistical analyses were 

performed by one-way ANOVA followed by a post hoc Tukey-Kramer test. Fisher’s exact test 

was used where appropriate. Calculations were performed using Statcel software (OMS 

Publishing, Japan). P values < 0.05 were considered statistically significant.  310 
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RESULTS 

The kick-in strategy 

Introducing a particular mutation into the genome of an animal is a time-consuming 

and elaborate task. The goal of this work was to develop a strategy that simplifies this 

undertaking. To this end, we adopted a 2-step protocol where ES cells are first transfected 315 

with a targeting vector that introduces site/orientation-directing recombination sites 

flanking an area of interest. These acceptor ES cells are transfected a second time to 

substitute the recombination-site flanked target region with mutated DNA. The production 

of the acceptor ES cells is the first and rate-limiting step, which lasts ~2 months, because 

it employs traditional homologous recombination technology. The second step, which involves 320 

replacing the target region with a mutant construct, is guided by a highly efficient process 

requiring 8 weeks. This translates into marked time savings prior to phenotyping efforts, 

as rapid production of multiple knock-in lines becomes possible (Fig. 1). 

Step 1: Acceptor ES cell production: The targeting vector is a key element of our 

approach. It provides for site/orientation-directed recombination through reconfiguration 325 

of Cre/loxP elements. The vector is not designed to genetically ablate a particular genomic 

region, but to insert an exchange acceptor site for later manipulation. To do so, we modified 



Tomonoh et al. 21 

 

the loxP sequence by substituting 5′- or 3′-end bases that prevented self-recombination 

(lox71 and loxKMR3, Table 1, boxed sequence). In combination with a third modified lox site, 

namely, lox2272 [11], this approach produced site-directed as well as orientation-directed 330 

recombination. The loxKMR3 element is a new right end-modified mutant found to efficiently 

recombine with lox71 [15]. The sequence site coming out of the recombination of these two 

lox elements contains modified bases derived from both lox elements. The resulting 

end-modified lox-like sequence is no longer a target of the inverse action of Cre, which 

ensures that the integrated mutation cassette is stably retained. Further control over 335 

recombination is provided by lox2272, which specifically recombines only with itself. 

Directional insertion of a mutation cassette (Step 2) is thus controlled by the appropriate 

combination of two different lox recombination sites. In the given scenario of 5′-lox71 

and 3′-lox2272 (Fig. 2A), recombination only occurred with a fragment that was flanked 

by loxKMR3 at the 5′-end and lox2272 at the 3′-end [11,16]. 340 

To simplify the selection of recombinant clones, we utilized a neomycin-resistance 

gene in the target vector. Expected homologous recombination on the chromosome excluded 

the diphtheria toxin cassette (DT-A), whereas random insertion of the target vector DNA 
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associated with the DT-A. Therefore, only recombinant clones survived, and clones containing 

random insertions were killed by diphtheria toxin (see kick-in example in Fig. 2A). 345 

Step 2: Acceptor ES cell mutation: Following Step 1, mutant DNA fragments were 

inserted into the ES cells. This was achieved by transfecting the acceptor ES cells with 

the respective mutation vector(s) comprising the loxKMR3 (5′) and lox2272 (3′) sites up- 

and downstream of the target region. Successful insertion was monitored via drug resistance 

to puromycin (Fig. 2A). Successful recombination was confirmed via PCR and Southern blotting 350 

(Fig. 2B–D). Undifferentiated cells were implanted into pseudopregnant females, and the 

offspring were backcrossed with FLP-expressing animals, to remove the FRT-enveloped 

puromycin cassette [17,18]. The resulting litter carried wildtype DNA with the exception 

of the desired genetic alteration, as well as two novel recombinase elements, a lox71 element 

and an FRT site, which occurred in intronic areas upstream and downstream of the target. 355 

Proof-of-principle: Kcnq2 mutation kick-in 

To demonstrate the workflow and efficiency of the kick-in approach, we generated two 

mouse lines with separate Kcnq2 mutations, Y284C and A306T (Fig. 3A). We chose these two 

particular variants because A306T already exists as an animal model, making it an excellent 
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choice for a direct comparison to current knock-in technology. The second variant, Y284C, 360 

has not been introduced into animals so far; it is a novel murine model for BFNE. 

The Kcnq2 kick-ins began with the target vector construct shown in Figure 2A containing 

Kcnq2 DNA spanning from intron 1 to intron 8 (Fig. 2A). Selection with neomycin produced 

cell colonies that were screened for homologous recombination by PCR. The forward primer 

was complementary to the target vector sequence, and the reverse primer was situated in 365 

the adjacent wildtype region (Fig. 2B, Table 2). This produced amplicons with the expected 

1.8-kb length for 9 of the 144 isolated colonies (1.8% of the originally isolated 500 colonies, 

Fig. 2C). Southern blotting with a radiolabeled probe confirmed that the 1.8-kb amplicon 

was indeed of the desired nature (Fig. 2C, bottom). The resulting positive clones were 

additionally subjected to restriction analysis using a BglII/BspHI double-digest of genomic 370 

DNA, followed by Southern blotting as described above. Wildtype DNA produced a signal at 

4.4-kb (Fig. 2D, wildtype lane), whereas recombinant samples yielded a 3.2-kb fragment (Fig. 

2D, lanes 1–6). Cell clones showing all the appropriate results were deemed “acceptor ES 

cells”. 

We next inserted Y284C and A306T-mutant DNA. Acceptor ES cells were electroporated 375 

with the respective mutation vectors and grown in puromycin-supplemented medium to select 
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for mutation-recombinant clones (Fig. 2A). Following PCR recombination analyses as 

described above, five morphologically undifferentiated clones were brought to term using 

standard procedures. The offspring were mated with FLP-expressing animals, thereby yielding 

two lines with Kcnq2 Y284C and A306T. Inheritance of the mutant Kcnq2 allele was verified 380 

in each generation via genomic DNA extracted from the tails of 4-week-old mice. Mutant 

alleles were detected by PCR amplification of a 0.7-kb segment between the intron 5 sequence 

and FRT elements. As expected, the wildtype setups did not produce any PCR amplicons. 

To determine where the mutant allele was expressed, we used RT-PCR with RNA from brain, 

heart, lungs, liver, spleen, kidneys, testes, and skeletal muscle of 8-week-old mice. The 385 

PCR setups following reverse transcription used primers that were designed to cover exon 

junctions 4/5 and 7/8, producing an amplicon of 350 bp. In wildtype mice and both kick-in 

mice, the patterns were consistent with expression that is limited to the brain (Fig. 3B). 

Some faint banding was detected in the heart of the wildtype as well as Y284C, but not A306T. 

The wildtype also produced a very faint signal in the testes, which was not discernible 390 

in either one of the two knockouts. 
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Morphological studies 

There were no brain anomalies detected in any of the animals. In the sensorimotor cortex, 

immunohistochemical analysis revealed no differences in expression of the Kcnq2 protein 

between Y284C/Y284C, Y284C/+, and wildtype mice (Fig. 4A). Furthermore, there was no 395 

significant difference in the number of Kcnq2-immunopositive neurons between Y284C/Y284C, 

Y284C/+, and wildtype mice (Fig. 4B). 

Behavioral and EEG analyses of Kcnq2 mutants 

Analyses using an open field setup, rotarod, and hot plate showed no significant 

differences between the wildtype and heterozygotes with respect to general behavior and 400 

sensorimotor function (n = 8–10; Tukey-Kramer test). Heterozygous animals of both lines 

displayed normal behavior and the EEG was unremarkable. Sleep ratios for non-rapid eye movement 

sleep, rapid eye movement sleep, and awake state were indistinguishable between wildtype and 

heterozygous animals (n = 8–10; Tukey-Kramer test). On the other hand, some of the Y284C 

homozygotes showed spontaneous seizures 6 weeks after birth. This included generalized 405 

forelimb and hindlimb clonic seizure followed by arrest with salivation (one female) as well 

as weak myoclonic seizures with spike discharges in the EEG. All Y284C homozygous mice (n 

= 4) showed these seizures with an average of 12 myoclonic attacks per hour in the daytime 



Tomonoh et al. 26 

 

(Fig. 5A). Animals homozygous for A306T displayed no seizures, but died shortly after birth, 

making EEG analysis impossible. 410 

Expression of c-Fos in Kcnq2 mutants  

Since neither of the heterozygous kick-in mice presented with spontaneous seizures 

but BFNE is characterized by neonatal seizures, we asked whether very early seizures had 

been missed prior to weaning. Evidence of such seizures can be produced postictally by 

examining c-Fos expression. We compared brain c-Fos expression in wildtype and Y284C mutant 415 

animals, because this protein acts as an indirect marker of neuronal seizure activity [19,20]. 

In the somatosensory cortex, no differences were noted with respect to c-Fos-positive cells. 

Comparatively, in the dorsal hippocampus of homozygous mutants, c-Fos expression was 

markedly elevated versus wildtype and heterozygous Y284C animals (Fig. S1; P < 0.05; n = 

3–8; Tukey-Kramer test), suggesting abnormal excitation levels. In the dentate gyrus of 420 

heterozygous Y284 animals, a large percentage of cells were c-Fos-positive, albeit without 

reaching statistical significance. None of the other brain regions examined showed any 

discernible difference compared to wildtype animals. Taken together, these data indicate 

that neuronal hyperactivity occurred not only in the homozygous animals, but also in the 

heterozygous animals, which did not present with spontaneous seizures. 425 
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PTZ-induced seizures in heterozygous mice 

We challenged the mutant animals with the chemical convulsant PTZ (45 mg/kg; i.p.) 

and scored them on a modified Racine scale (Fig. 5B). Heterozygotes injected with PTZ showed 

a significant increase in seizure severity compared to wildtype animals. Seizure scores 

averaged 4.5 ± 0.2 and 4.1 ± 0.1 for the Y284C and A306T mice, respectively (P < 0.01 430 

vs. WT, n = 6–8; Tukey-Kramer test), and 3.1 ± 0.3 in the wildtype animals (Fig. 5C). We 

also examined the seizure type, based on an operational threshold of seizure level 4+ (shown 

as a fractional pattern in Figure 5C). Heterozygotes reached score 4 seizures in all cases, 

compared to 4/10 animals (38%) in the wildtype (Fig. 5C; P< 0.01 for Y284C and A306T; 

Fisher’s exact test). Inspection of the seizure latency revealed no differences between 435 

wildtype and both groups of heterozygous mice. 

M-current in hippocampal pyramidal neurons 

Since central hyperexcitability was evident in the mutant mice, we examined the 

electrophysiological properties in brain neurons of these animals. More specifically, 

because Kv7.2 plays a role mediating M-current (IM), we voltage-clamped CA1 neurons in the 440 

perforated patch configuration to examine the biophysical signature of the hyperpolarizing 

K+ current. We measured the tail current amplitude by stepping from the holding potential 
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(-20 mV) to various test potentials (from -70 to 40 mV, Fig. 6A). At more depolarized 

potentials, we noticed a significant IM reduction in homozygous Y284C mice aged 4 and 10 

weeks, and in 10-week- old heterozygous Y284C mice at -60 mV (Fig. 6B, C); 4-week-old, -40 445 

mV: wildtype = 28.7 ± 4.2 pA (n = 30); Y284C/+ = 26.5 ± 2.7 pA (n = 39); Y284C/Y284C = 

11.8 ± 3.3 pA (n = 20); F = 5.31, P = 0.0067 by one-way ANOVA, post-hoc, wildtype vs. 

Y284C/Y284C, P < 0.01 by Tukey-Kramer test. 10-week-old, -60 mV: wildtype = 36.2 ± 6.3 

pA (n = 15); Y284C/+ = 18.0 ± 1.6 pA (n = 12); Y284C/Y284C = 17.7 ± 1.7 pA (n = 9); F 

= 4.72, P = 0.017 by one-way ANOVA, post-hoc, wildtype vs. Y284C/+ and wildtype vs. 450 

Y284C/Y284C, P < 0.05 by Tukey-Kramer test. These data indicate attenuation of the M-current 

in Kcnq2 mutant mice. 

DISCUSSION 

Advantages of the kick-in system 

The kick-in system provides a solution for the problems associated with conventional 455 

knock-in technology. A comparison of both, the kick-in system and conventional knock-in 

technology, is shown in Figure 1. Conventional knock-in technology is a highly time- and 

cost-consuming undertaking that is primarily limited by resources, making the generation 

of multiple lines difficult. Any additional genetic alterations, even if situated near a 



Tomonoh et al. 29 

 

previously examined change, require full-scale repetition of all previously invested effort, 460 

which complicates simultaneous analysis of many potentially interesting genetic variations. 

Side-by-side comparison of multiple knock-in mouse lines is therefore rare. 

Contrary to the conventional knock-in technology, our kick-in system has been built 

on modified Cre/lox technology [21,22]. The recombination efficiency of our system is ~100% 

[11], whereas homologous recombination in the conventional strategy is as low as 1:105 [23]. 465 

The kick-in system first establishes ES cells with recombination sites enveloping the target 

genomic region. These acceptor ES cells then serve as a platform for the development of 

animals with genetic alterations within the target region. Maintenance of the acceptor ES 

cells requires no more than standard tissue culture procedures. Target region knock-in mice 

from the acceptor ES cells were obtained within 8 weeks. Development of genetically altered 470 

animals can therefore proceed at previously impossible rates, making the side-by-side 

comparison of multiple animal lines feasible. This constitutes a significant step forward 

for basic research, which, up to this point, focused mainly on examining a single, “most 

important” variant of a protein, one at a time. 

The kick-in, of course, does not stand alone when it comes to improvements in knock-in 475 

technology. There are various other knock-in modifications that provide significant 
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advances over the traditional knock-in approach, such as the CRISPR/Cas system [24] and 

TALEN [25]. The CRISPR/Cas approach, for example, allows generation of knock-in mice within 

4 weeks [26], but it requires a Protospacer Adjacent Motif, which limits the boundaries 

of the knock-in, while the kick-in accommodates a large target region. 480 

Validity of the kick-in system 

Our mutant mouse lines demonstrate the validity of the kick-in system. We found no 

evidence of morphological or behavioral changes. Neuronal excitability, on the other hand, 

was elevated as revealed by EEG analysis and PTZ challenge. These findings compare to those 

gathered in mice produced with conventional Kcnq2 knock-in technology. Singh et al. 485 

generated A306T mutant knock-in mice and examined them very closely. In their study, five 

A306T homozygous mice showed at least one forelimb and hindlimb tonic extension between 

P20 and P40, and all the mice died either immediately after birth or between P23 and P32 

[9]. Although we did not observe spontaneous seizures in our A306T homozygotes, all of our 

mice similarly died at a young age. Interestingly, our Y284C homozygotes showed spontaneous 490 

forelimb and hindlimb clonus in addition to myoclonic seizures. Whether or not myoclonus 

can be a part of the phenotype in BFNE patients harboring the A306T or Y284C variation is 

uncertain, but patients with the A207T mutation reportedly do present with myoclonic jerks 



Tomonoh et al. 31 

 

[27]. None of the Y284C homozygous mice died early, but 5 out of 17 (30%) homozygous mice 

perished during surgery for EEG analysis versus 3 out of 51 wildtype mice (6%) and 1 out 495 

of 50 heterozygous mice (2%), suggesting that Y284C homozygotic animals mice were more 

vulnerable during invasive brain surgery. 

When challenged with the chemical convulsant PTZ, Y284C, and A306T animals showed 

elevated seizure susceptibility. These results are similar to the conventional knock-in 

A306T mice, in which the A306T heterozygotes had reduced electroconvulsive seizure 500 

thresholds, suggesting neuronal hyperexcitability [28]. Otto et al. proposed that increased 

seizure susceptibility and mortality after kindling relates to altered excitability in these 

animals [28]: PTZ and electroconvulsion both examine neuronal hyperexcitation, albeit 

through different pathways. Ties between neuronal hyperexcitability and Kcnq2 deficiency 

are, of course, not new, as reported by Watanabe et al. who found hypersensitivity to PTZ 505 

[29].  

In terms of neuronal hyperexcitability, A306T may produce stronger effects than Y284C, 

since A306T homozygotes died earlier than Y284C homozygotes. Direct comparative data between 

the human Y284C and A306T phenotype are not available [8], however, experiments in Xenopus 

oocytes revealed an IM reduction by about 90% in homozygous A306T, while homozygous Y284C 510 
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IM was reduced by about 50%. Pseudo-heterozygous setups produce IM reductions approximating 

40% in both cases [30]. It is possible that the pronounced IM effect is, at least in part, 

responsible for the premature death of the A306T homozygous animals. Singh et al. furthermore 

showed that CA1 neuronal IM amplitudes from A306T heterozygous mice were no different from 

those measured in WT mice, but were significantly decreased in A306T homozygous mice at 515 

every potential tested [9]. The researchers concluded that the decrease in induced seizure 

threshold without changes in current amplitude in the heterozygous knock-in mice might be 

the result of faster deactivation kinetics seen in heterozygous mice. We also conducted 

direct electrophysiological analysis on Y284C brain slices, which show a significant 

reduction in IM homozygous animals, in particular during strong depolarization at 4 and 10 520 

weeks of age. Heterozygous brains also showed reductions in IM, which may relate to these 

animals’ lowered seizure threshold. 

Since all experimental results confirm our approach’s functionality, we conclude that 

the kick-in is a suitable technique to quickly generate a wide variety of genetic alterations. 

We see the kick-in as an enabler for phenotyping efforts of novel pathogenic and 525 

non-pathogenic alterations in an era where new genetic variation data become rapidly 
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available. We furthermore present a new BFNE model, which will help advance our understanding 

of pediatric epilepsy by providing a platform for various functional analyses. 
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LEGENDS  

Figure 1. Comparison of Kick-in and Knock-in methodologies 

On the left is a schematic of a traditional knock-in along with the estimated duration of 

each step. Juxtaposed on the right are the corresponding steps for a kick-in; savings in 

time and cost versus the knock-in are highlighted by a little stopwatch. Low recombination 615 

rates (~1:105) are associated with homologous recombination. To make several constructs, 

homologous recombination must be performed for each construct. In the kick-in system, 

homologous recombination is needed only once, even if several constructs are made. 

Figure 2. The Kcnq2 kick-in 

(A) Depicted is the murine Kcnq2 gene. Introns are shown as a solid horizontal line and 620 

the interspaced white bars symbolize the numbered exons. Aligned underneath is the targeting 

vector construct. Areas of homologous recombination are indicated by crosses between the 

two DNAs. The targeting vector, which confers neomycin resistance, introduces various lox 

elements and flippase recognition targets (FRTs) that are primed for subsequent 

recombination exchange with a puromycin-resistance mutation vector that contains the 625 

desired missense variations in exon 6. Triangular symbols are explained in Table 1. 

Additional detail is provided in the Methods & Materials. (B) Schematic explaining PCR and 
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Southern blot analyses confirming homologous recombination in cloned embryonic stem cells. 

Arrows at the bottom demark the positions of primers used in the PCR analysis. Double-headed 

arrows span the restriction fragment used in the Southern blot analysis with the probe shown 630 

at the bottom. (C) Identification of homologous recombination clones. Top: PCR amplicons 

generated using the PCR primers that span the wildtype/recombination junction (see Panel 

B), such that only mutant DNA is expected to be amplified; agarose/TBE gel with the expected 

band at 1.8 kb highlighted with an asterisk (*); other bands result from non-specific 

amplification. Bottom: To confirm that the PCR-amplified 1.8-kb fragment originated from 635 

the recombinant Kcnq2 allele, the DNA was analyzed by Southern blot hybridization with the 

probe shown in Panel B. (D) Southern blot of the genomic DNA restriction fragments from 

six targeted clones. Presence of a 4.4-kb signal indicates wildtype DNA, whereas 3.2-kb 

confirms mutant DNA (irrespective of Y284C or A306T mutation). Control setups used wildtype 

DNA from C57BL/6J wildtype mice. 640 

Figure 3. Genotyping of Kcnq2 mutant mice 

(A) Based on structural analogies to related channels, p.Tyr284 and p.Ala306 map to the 

outer mouth of the pore and the inner lining of the channel, respectively. (B) Expression 

specificity of the mutated Kcnq2 alleles. Exon 6, including 350-bp segments of Kcnq2 
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transcripts from various tissues, was amplified by RT-PCR and electrophoresed on 2.0% 645 

agarose/TBE gels (top). Reference RNA samples are shown at the bottom. Br, brain; Ht, heart; 

Lg, lung; Lv, liver; Sp, spleen; Kd, kidney; Ts, testes; Sm, skeletal muscle. (C) Nucleotide 

sequence of wildtype and knock-in DNA. Direct sequencing of a PCR fragment amplified from 

genomic DNA using primers complementary to the lox71/KMR3 site and the FRT site, which are 

5′ and 3′ of exon 6, respectively. Depicted are partial chromatograms for nine bases that 650 

cover the codon of interest, as well as one upstream and one downstream codon at position 

p.Tyr284 (top) and p.Ala306 (bottom). From left to right are sequencing results for wildtype, 

and heterozygotes of Y284C and A306T. Arrowhead, mutated base. 

Figure 4. Morphological studies 

(A) Light micrographs of Kv7.2 immunoreactivity in the sensorimotor cortex. Note the 655 

immunostained neuronal cell bodies in layers II to VI. (B) Cell count of Kv7.2-immunopositive 

neurons in layers II/III and V in the frontal cortices of wildtype, heterozygous, and 

homozygous Y284C mice. No differences were noted. 

Figure 5. Behavioral analysis of Kcnq2 kick-ins 

(A) Electroencephalography (EEG) with video monitoring revealed spontaneous myoclonic 660 

seizures with spike discharges in all Y284C homozygotes (n = 4). On average, the animals 
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had 12 myoclonic seizures per hour in the daytime. (B) Modified Racine’s scale. Behavioral 

criteria used to score the seizures in this study. Adopted and modified from Lüttjohann 

et al., 2009. All seizures scoring 4 or above were generalized. (C) 

Pentylenetetrazole/saline (PTZ) induced seizures in wildtype (white bar), Y284C, and A306T 665 

heterozygous mice (grey bars). The bar height represents the average seizure score; the 

hashed part of the bar represents the fraction of the animals that reached seizure score 

4 and above. Asterisks denote P < 0.05 (Tukey-Kramer test). 

Figure 6. Kcnq2 mutant brain slice electrophysiology  

(A) Sample traces recorded from 10-week old Y284C heterozygous CA1 neurons in response to 670 

voltage steps to the indicated potential. (B, C) Voltage-dependence of M-current activation 

in wildtype (〇), heterozygous (), and homozygous () Y284C mice at 4 weeks (B) and 10 

weeks (C). Whole-cell perforated patched CA1 neurons were stepped to the indicated potential 

and back to -20 mV to determine tail current amplitudes. Significant IM reductions were seen 

in Y284C homozygotes at 4 and 10 weeks, and in heterozygotes at 10 weeks at -60 mV (P < 675 

0.05, Tukey-Kramer test). 
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Supporting Information Legends 

Figure S1. c-Fos based excitability measurements in the Kcnq2 mutants 

c-Fos expression is a measure of prior cellular activity. Wildtype somatosensory cortex 

and dentate gyrus were indistinguishable from that of newborn Y284C homozygotes. By 680 

comparison, close examination of the dorsal hippocampus, a region commonly implicated in 

seizure disorders, revealed a clear and significant increase in c-Fos expression, which 

is indicative of cellular hyperactivity (P < 0.05, Tukey-Kramer test). 

 

Table 1. Sequence information for lox sites 685 

Nucleotide sequences of all lox elements used in this study. Bases differing from the 

original loxP sequence are boxed. 

Table 2. Primer sequences 

Primer details for the Kcnq2 genomic cloning, confirmation of acceptor ES cells, genotyping, 

and amplification of the Kcnq2 transcript in animal tissues. 690 



Tomonoh et al. 43 

 

TABLES 

Table 1: Sequence information for lox sites 

Name Sequence 

loxP ATAACTTCGTATA GCATACAT TATACGAAGTTAT 

lox71 TACCGTTCGTATA GCATACAT TATACGAAGTTAT 

loxKMR3 ATAACTTCGTATA GCATACAT TATACCTTGTTAT 

lox71/KMR3 TACCGTTCGTATA GCATACAT TATACCTTGTTAT 

lox2272 ATAACTTCGTATA GGATACTT TATACGAAGTTAT 
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Table 2: Primer sequences 

Purpose Sequence Location 

Kcnq2 genomic 

cloninga 

5′-GGGAAGGAGCGGCCGCAGGAAGGGGGTGGAGGGCACTGGACCTG-3′ (sense) intron 1, NotI site added at 5′-end 

5′-GACGGTGCGCGGCCGCCGTGGCAGCCTGGGAAAGGCCAGAAAGAT-3′ (antisense) intron 7, NotI site added at 5′-end 

confirmation of 

acceptor 

embryonic stem 

cellsb 

5′-CATTCCTCCCACTCATGATCTATAGATCCCC-3′ (sense) 

polyadenylation region of the 

neomycin open reading frame in the 

targeting vector 

5′-CCAGAGTCCACTGTAATTCCAAAGTCACCT-3′ (antisense) 
intron 7 distal to the Kcnq2 sequence 

included in the targeting vector 

genotyping of 

animalsc 

5′-TAGGGGAGCCTTGGGAATGGTTCCCC-3′ (sense) 
intron 5 distal to the lox71 site 

included in the targeting vector 

5′-GTATAGGAACTTCAGAGCGCTTTTGAAGC-3′ (antisense) FRT site 

amplification of 

Kcnq2 transcript 

in animal tissuesd 

5′-GTAGTCTACGCTCACAGCAAGGAGCTGGTG-3′ (sense) exon 4/exon 5 junction  

5′-AGAATCTCCAGGCAGACTGGATCAGACCTG-3′ (antisense) exon 7/exon 8 junction 

aamplicon size: 7.5 kb 

bexpected amplicon size: 1.8 kb; non-homologously recombined DNA is not expected to amplify 

cexpected amplicon size: 0.7 kb; wildtype allele is not expected to amplify 

dexpected amplicon size: 0.35 kb; wildtype and mutant transcripts were simultaneously amplified 

All primers were synthesized by GeneNet (Fukuoka, Japan) 
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