1	Original paper
2	
3	Vitamin D-dependent Cathelicidin Inhibits Mycobacterium marinum Infection in
4	Human Monocytic Cells
5	
6	Running title: Vitamin D-dependent CAMP inhibits M. marinum infection
7	
8	Emi Sato ^{#,1,2} , Shinichi Imafuku ¹ , Kazunari Ishii ² , Ryota Itoh ² , Bin Chou ² , Toshinori
9	Soejima ² , Juichiro Nakayama ¹ , and Kenji Hiromatsu ² .
10	
11	¹ Department of Dermatology, and ² Microbiology and Immunology, Fukuoka University
12	School of Medicine, Fukuoka, Japan.
13	*Corresponding author: Emi Sato, Department of Dermatology, Fukuoka University
14	School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
15	Tel: +81-92-801-1011 (ext. 3405); Fax: +81-92-861-7054,
16	E-mail: emi_sato1982@yahoo.co.jp

17 Abstract

18	BACKGROUND : 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) up-regulates the
19	production of human cathelicidin antimicrobial peptide (CAMP) from
20	monocytes/macrophages infected with Mycobacterium tuberculosis (M. tbc). CAMP
21	facilitates the co-localization of autophagolysosomes with <i>M. tbc</i> , promoting the
22	antimicrobial activity of monocytes. Mycobacterium marinum (M. marinum) is an
23	acid-fast bacillus that causes less severe granulomatous skin lesions compared with M .
24	tbc.
25	OBJECTIVE : We investigated whether autophagic antimicrobial activity is promoted
26	by 1,25(OH)2D3 or C-terminal of cathelicidin LL-37 in human monocytes upon
27	infection with <i>M. marinum</i> .
28	METHODS: Human monocytes (THP-1) were infected with <i>M. marinum</i> . Effects of
29	simultaneous treatments of 1,25(OH)2D3, exogenous LL-37 peptide,
30	autophagolysosome inhibitors, 3-methyladenine or chloroquine, were examined.
31	RESULTS : CAMP was strongly induced by adding 1,25(OH)2D3 to the culture of
32	THP-1 cells. In the absence of 1,25(OH)2D3 <i>M. marinum</i> infection alone did not induce
33	CAMP, however, simultaneous addition of 1,25(OH)2D3 to <i>M. marinum</i> infection
34	accelerated CAMP production more than 1,25(OH)2D3 alone. Proliferation of M.

35	marinum was markedly decreased in the presence of 1,25(OH)2D3 or exogenous LL-37
36	in THP-1 cells. Co-localization of CAMP with autophagolysosome was evident in
37	1,25(OH)2D3 and LL-37 treated THP-1cells after <i>M. marinum</i> infection.
38	Autophagolysosome inhibitors abrogated the antimicrobial effects of 1,25(OH)2D3 and
39	exogenous LL-37 against <i>M. marinum</i> infection in THP-1 cells.
40	CONCLUSIONS: Human monocytic cells, whose CAMP production is up-regulated
41	by 1,25(OH)2D3-vitamin D receptor pathway, accelerate antimicrobial function of
42	autophagolysosome in M. marinum infection.
43	
44	Abbreviations: CAMP, cathelicidin antimicrobial peptide; VDR, vitamin D receptor;
45	1,25(OH)2D3, 1α,25-dihydroxyvitamin D3; ATG, autophagy-related genes: CQ,
46	chloroquine; 3-MA;3-methyladenine
47	
48	Keywords: cathelicidin antimicrobial peptide; vitamin D3; autophagy; Mycobacterium

marinum

INTRODUCTION

51	The human cathelicidin antimicrobial peptide (CAMP) has been shown to
52	exhibit broad-spectrum antimicrobial activity against a range of Gram-positive and
53	Gram-negative bacterial species. CAMP gene is a direct target of the vitamin D receptor
54	(VDR) and is strongly up-regulated in various cells such as neutrophils, macrophages
55	and epithelial cells by 1α ,25-dihydroxyvitamin D3 (1,25(OH)2D3), an active form of
56	vitamin D ^{1,2} . CAMP becomes its mature extracellular form of 37 amino acid peptide,
57	LL-37, after truncation by protease, and executes its antimicrobial activity directly
58	against invading pathogens.
59	It has been shown that CAMP plays intracellular roles in addition to direct
60	antimicrobial activity against pathogens. Jo et al. have recently shown that
61	1,25(OH)2D3 can up-regulate the production of CAMP from monocytes/macrophages
62	infected with Mycobacterium tuberculosis (M. tbc), and CAMP induces autophagy and
63	facilitates the co-localization of autolysosomes with <i>M. tbc</i> to promote the antimicrobial
64	activity of monocytes ³ . Autophagy is a generic term for all pathways by which
65	cytoplasmic materials are delivered to the lysosome in animal cells or the vacuole in
66	plant and yeast cells ^{4,5} . Autophagy occurs when an autophagosome (a double-membrane
67	vacuole) containing cytoplasmic material, fuses with a lysosome to deliver sequestered

68	material for lysosomal degradation ⁶ , and multiple autophagy-related genes (ATG)
69	proteins govern autophagosome formation ⁷ . Growing evidence suggests that autophagy
70	contributes to the intracellular killing of <i>M. tbc</i> by facilitating phagolysosome fusion
71	and thereby providing a mechanism to counteract the ability of <i>M. tbc</i> to evade the host
72	response ⁸⁻¹⁰ .

73	Mycobacterium marinum (M. marinum) is a nontuberculous photochromogenic
74	mycobacterium species belonging to group I of Runyon's classification ¹¹ , and causes
75	granulomatous skin lesions. The cutaneous infection caused by M. marinum, which
76	mostly affects those who own aquariums or are in contact with fish, is the most
77	common. The lesion, usually at the hand or forearm, is initially nodular but may
78	subsequently ulcerate, whereas the sporotrichoid form is characterized by small nodules
79	along lymphatic ducts ¹² . <i>M. marinum</i> has been increasingly studied as a model of <i>M. tbc</i>
80	due to its relative safety and its shared mechanisms of pathogenesis ¹³⁻¹⁵ . However it still
81	remains to be determined whether 1,25(OH)2D3 and/or LL-37 can augment
82	antimicrobial activity against <i>M. marinum</i> infection like against <i>M. tbc</i> infection as
83	recently shown. Here we show that antimicrobial activity is promoted by autophagy via
84	1,25(OH)2D3 or LL-37 in human monocytes infected with <i>M. marinum</i> .

85 Materials and Methods

86 Cells and Reagents

87 THP-1 cells and U937 cells were purchased (American Type Culture Collection) and

maintained in RPMI 1640 (Wako, Osaka, Japan) with 10% FBS (GIBCO, Carlsbad, CA,

VISA). Autophagy-related gene 5 deficient (*ATG5^{-/-}*) MEF cells were obtained from

- 90 Riken BioResource Center, Cell Bank (Ibaraki, Japan) and maintained in DMEM with
- 91 10% FBS¹⁶. 1,25(OH)2D3 (BIOMOL International) was added to the culture at 10 nM

and synthetic LL-37 peptide (Innovagen, Lund, Sweden) was added at $10 \mu g/ml$.

- Autophagy antagonists 3-methyladenine (3-MA) and chloroquine (CQ) (Sigma-Aldrich,
- St Louis, MO, USA) were added to the culture at 1 μ g/ml and 5 μ M, respectively.
- 95

96 **Pathogens and Colony-Forming Unit (CFU) Assay**

- 97 *M. marinum* strain NJB0419 was obtained from Japan Anti-Tuberculosis Association
- 98 (Tokyo, Japan) and cells were infected with *M. marinum* at multiplicity of infection
- 99 (MOI) of 1–10. The efficiency of infection was determined by Ziehl-Neelsen staining.
- 100 Infected cells were treated with 1,25(OH)2D3 or LL37 in triplicate wells, and then
- 101 collected between 1–3 days. Cells were centrifuged at 2000 rpm for 5 minutes to form a
- 102 pellet and then the supernatant was aspirated. Intracellular *M. marinum* were obtained

103	by lysing the cells with 0.5% Triton-X100 in PBS. M. marinum isolates were 10-fold
104	serially diluted and plated on Middlebrook 7H10 (BD Bioscience, San Jose, CA, USA)
105	agar plates supplemented with 10% OADC Enrichment, then incubated at 30°C for 10
106	days. Colonies formed were counted as CFU for quantification of the mycobacteria. M.
107	marinum optical density (OD ₅₇₀) is measured by Model 680 Microplate Reader
108	(BIO-RAD, CA, USA)
109	
110	Isolation of total RNA and quantitative RT-PCR
111	Total RNA was prepared using Trizol Reagent (Invitrogen, Carlsbad, CA, USA).
112	First-strand cDNA was synthesized from 1 µg of the total RNA using a SuperScript [™]
113	III First-Strand Synthesis System (Invitrogen). Quantitative real-time RT-PCR
114	(qRT-PCR) was performed using SYBR Premix DimerEraser [™] (TaKaRa, Siga, Japan)
115	in a 7500 Real-Time PCR System (Applied Biosystems, Carlsbad, CA, USA). The
116	gene-specific primer sequences are shown in Table 1. β -actin was amplified as an
117	internal control each time qRT-PCR was performed, and the $\Delta\Delta$ Ct method was
118	employed to quantify the relative amounts of transcripts. The Student's <i>t</i> -test was used
119	for statistical analyses. A p value < 0.05 was considered statistically significant.
120	

121 Enzyme-linked immunosorbent assay (ELISA)

122	Interleukin (IL)-12/23 p40, interferon (IFN)- β or tumor necrosis factor (TNF)- α in the
123	supernatants of treated cells was measured using commercially prepared ELISA plates
124	according to the manufacturer's suggestion (IL-12/23 p40 and TNF- α , R&D Systems,
125	Minneapolis, MN, USA; IFN-β, Peprotech, Rocky Hill, NJ, USA).
126	
127	Western blot
128	2×10^5 cells were lysed and separated on 15% SDS-PAGE gels and transferred onto a
129	polyvinylidene difluoride membrane as described previously ¹⁷ . Membranes were
130	blocked in PBS containing 5% skim milk at room temperature for 1 h. The specific
131	proteins were determined by incubation with specific antibodies against human β -actin
132	(1:1000, Santa Cruz Biotechnology, Santa Cruz, CA, USA), VDR or LL-37 (1:200,
133	Santa Cruz Biotechnology) at 25°C for 1h. After washing, the membrane was incubated
134	in a 1:3,000 dilution of a secondary antibody (sheep anti-mouse IgG-HRP conjugate;
135	GE Healthcare, Little Chalfont, UK) at room temperature in the washing buffer (PBS
136	containing 0.5% Tween 20) for 30min. The protein bands were visualized using ECL
137	Western Blotting Detection Reagents (GE Healthcare). Densitometry LAS-3000
138	software (FUJIFILM, Tokyo, Japan) was used to quantify the LL-37 protein levels, and

139 the levels were normalized to β -actin.

140

141	Immunofluorescent staining
142	Cells were seeded onto glass cover slips in 24-well plates. Cells were fixed in 3.7%
143	paraformaldehyde, incubated in 50 mM glycine for 5 minutes, permeabilized and
144	blocked with 1.5% BSA for 30 minutes. Immunostaining was performed using
145	polyclonal anti-LL-37 antibodies (1:1000, Innovagen) or monoclonal anti-LC3 (1:200,
146	Santa Cruz Biotechnology, Santa Cruz, CA, USA) and LAMP-1 antibodies (1:200,
147	Santa Cruz Biotechnology). Secondary Alexa Fluor 488 and 546-conjugated antibodies
148	were obtained from Invitrogen and used by 1:2000. Cells were washed with PBS, and
149	cover slips were mounted using ProLong® Gold antifade Reagent with DAPI
150	(Invitrogen). Fluorescence images were acquired by BIOREVO BZ-9000 (Keyence,
151	Japan). Presented are representative results observed in the majority of cells from
152	several repeats.
153	

154 Lentiviral shRNA transduction to THP-1 cells

155 VDR and control shRNA Lentiviral Particles were purchased from Santa Cruz

156 Biotechnology. RPMI 1640 containing virus (MOI:1) and polybrene (8 µg/ml) was

157	added to THP-1 cells, and seeded onto 24-well plates. The plate was centrifuged at 2000
158	rpm for 90 minutes, then RPMI 1640 was added and the cells incubated at 37°C
159	overnight. The next day, cells were washed and infected with virus using the same
160	protocol, and incubated for 24 hours. Then, medium was changed and the cells were
161	incubated for 72 hours. Single colony isolation was performed by growth in 50%
162	methylcellulose mixed-RPMI 1640 containing puromycin (4 μ g/ml) for 4-5 weeks. The
163	protocol for transduction into THP-1 cells was a gift from the Department of Virology,
164	Kyushu University School of Medicine, Fukuoka, Japan.

Results

166	LL-37 does not directly inhibit the growth of <i>M. marinum in extracellular culture</i> .
167	First, we tested the direct antimicrobial activity of the externally added LL-37
168	(10 μ g/mL) in <i>M. marinum in vitro axenic</i> culture in the absence of THP-1 cells. OD ₅₇₀ ,
169	which reflects the concentration of <i>M. marinum</i> did not show any difference between
170	cultures in the presence or absence of LL-37 and in fact there was no difference in CFU
171	at 72 hours, indicating that LL-37 does not directly inhibit the growth of <i>M. marinum</i> in
172	culture medium(Fig. 1A, 1B).
173	
174	M. marinum growth in THP-1 cells were suppressed by treatment with
175	1,25(OH)2D3 or LL-37
175 176	1,25(OH)2D3 or LL-37 Next, we investigated whether 1,25(OH)2D3 or extracellular LL-37 could suppress <i>M</i> .
175 176 177	1,25(OH)2D3 or LL-37Next, we investigated whether 1,25(OH)2D3 or extracellular LL-37 could suppress <i>M</i>.<i>marinum</i> growth in THP-1 cells. THP-1 cells were infected with <i>M. marinum</i> at MOI of
175 176 177 178	 1,25(OH)2D3 or LL-37 Next, we investigated whether 1,25(OH)2D3 or extracellular LL-37 could suppress <i>M</i>. <i>marinum</i> growth in THP-1 cells. THP-1 cells were infected with <i>M. marinum</i> at MOI of 1 in the presence or absence of 1,25(OH)2D3 (10 nM) or LL-37 (10 μg/ml) and
175 176 177 178 179	 1,25(OH)2D3 or LL-37 Next, we investigated whether 1,25(OH)2D3 or extracellular LL-37 could suppress <i>M</i>. <i>marinum</i> growth in THP-1 cells. THP-1 cells were infected with <i>M. marinum</i> at MOI of 1 in the presence or absence of 1,25(OH)2D3 (10 nM) or LL-37 (10 µg/ml) and incubated for 24 to 72 hours (Fig. 2A, 2B). Intracellular <i>M. marinum</i> growth occurred
 175 176 177 178 179 180 	 1,25(OH)2D3 or LL-37 Next, we investigated whether 1,25(OH)2D3 or extracellular LL-37 could suppress <i>M</i>. <i>marinum</i> growth in THP-1 cells. THP-1 cells were infected with <i>M. marinum</i> at MOI of 1 in the presence or absence of 1,25(OH)2D3 (10 nM) or LL-37 (10 µg/ml) and incubated for 24 to 72 hours (Fig. 2A, 2B). Intracellular <i>M. marinum</i> growth occurred vigorously in THP-1 cells in the absence of 1,25(OH)2D3 or LL-37. Addition of
 175 176 177 178 179 180 181 	 1,25(OH)2D3 or LL-37 Next, we investigated whether 1,25(OH)2D3 or extracellular LL-37 could suppress <i>M</i>. <i>marinum</i> growth in THP-1 cells. THP-1 cells were infected with <i>M. marinum</i> at MOI of 1 in the presence or absence of 1,25(OH)2D3 (10 nM) or LL-37 (10 µg/ml) and incubated for 24 to 72 hours (Fig. 2A, 2B). Intracellular <i>M. marinum</i> growth occurred vigorously in THP-1 cells in the absence of 1,25(OH)2D3 or LL-37. Addition of 1,25(OH)2D3 or LL-37 significantly suppressed <i>M. marinum</i> growth as confirmed by

183	U937 cells (data not shown). Morphological analysis (Ziehl-Neelsen staining) revealed
184	that numerous live bacilli in the cytoplasm in THP-1 cells at 24hours after infection
185	with <i>M. marinum</i> , while simultaneous treatment of 1,25(OH)2D3 or LL-37 caused
186	marked degradation and decrement of bacilli inside the cells (Fig. 2B).
187	
188	Intracellular CAMP is increased in 1,25(OH)2D3-treated THP-1 cells
189	We further investigated whether 1,25(OH)2D3 treatment could induce cathelicidin in
190	THP-1 cells. Analyses by qRT-PCR showed that CAMP mRNA was strongly up
191	regulated in uninfected THP-1 cells, and further up regulated in M. marinum-infected
192	cells following the addition of 1,25(OH)2D3 (10 nM) (Fig. 3A). In contrast, CAMP was
193	not induced by <i>M. marinum</i> infection alone or <i>M. marinum</i> supplemented with
194	exogenous LL-37. The presence of LL-37 was detected in the culture supernatant of the
195	1,25(OH)2D3-treated control culture, and was further increased when infected with M .
196	marinum (Fig. 3B). Similar results were observed at 72 hours after infection (data not
197	shown). IFN- β , TNF- α and IL-12p40 mRNA expressions were strongly induced by <i>M</i> .
198	marinum infection, and suppressed by simultaneous treatment with 1,25(OH)2D3 or
199	exogenous LL-37 (Fig. 3A). Concentrations of IFN- β , TNF- α , IL-12p40 in the
200	supernatant measured by ELISA showed comparable changes consistent with mRNA

201 data (Fig. 3B). These results suggest an anti-inflammatory function of cathelicidin
202 LL-37 peptide.

203

204	Autophagy is induced in 1,25(OH)2D3 and LL-37-treated THP-1 cells 24 hours
205	after <i>M. marinum</i> infection
206	Intracellular CAMP (green) levels increased in 1,25(OH)2D3-treated THP-1 cells, and
207	partly co-localized with LC3 protein (red) located on autophagosome membranes (Fig.
208	4A). LC3 (green) and LAMP1 (red), the main glycoprotein in lysosomal membranes,
209	were co-localized in 1,25(OH)2D3 or LL-37-treated THP-1 cells after M. marinum
210	infection (Fig. 4B). These results suggest that autophagolysosome is induced in THP-1
211	cells by simultaneous treatment with $1,25(OH)2D3$ or LL-37 upon infection with M .
212	marinum.
213	
214	Blocking VDR by shRNA suppresses intracellular killing of <i>M. marinum</i> but
215	rescued by addition of external LL-37
216	VDR-specific shRNA was designed to interfere with the transcription of VDR. Fig. 5A
217	showed a marked reduction of CAMP (18kDa) levels in VDR-shRNA treated cells in

the presence of 10 nM 1,25(OH)2D3 compared to control–shRNA treated cells. A

219	truncated form of CAMP (arrow head, 12kDa) was abundant in control cells infected
220	with <i>M. marinum</i> , but not in uninfected controls treated with 1,25(OH)2D3.
221	VDR-knock down cells showed increased CFU of M. marinum (Fig. 5B) in the presence
222	of 10nM 1,25(OH)2D3, suggesting that 1,25(OH)2D3 signaling through VDR is
223	required for the intracellular killing of <i>M. marinum</i> . We further investigated whether
224	reduced antimicrobial activity against <i>M. marinum</i> in shVDR-THP-1 cells can be
225	rescued by adding external LL-37. As expected, addition of LL-37 in shVDR-THP-1
226	cells recovered the killing activity against M. marinum (Fig. 5B).
227	
228	Autophagy antagonists or ATG5 deficiency could not suppress the growth of M.
228 229	Autophagy antagonists or <i>ATG5</i> deficiency could not suppress the growth of <i>M</i> . <i>marinum</i> , and addition of external LL-37 did not recover the bactericidal activity
228 229 230	Autophagy antagonists or <i>ATG5</i> deficiency could not suppress the growth of <i>M</i> . <i>marinum</i> , and addition of external LL-37 did not recover the bactericidal activity Next, we tested whether blocking autophagy using autophagy antagonists resulted in the
228 229 230 231	Autophagy antagonists or <i>ATG5</i> deficiency could not suppress the growth of <i>M</i> . <i>marinum</i> , and addition of external LL-37 did not recover the bactericidal activity Next, we tested whether blocking autophagy using autophagy antagonists resulted in the suppression of intracellular killing of <i>M. marinum</i> . Growth of <i>M. marinum</i> in THP-1
 228 229 230 231 232 	Autophagy antagonists or <i>ATG5</i> deficiency could not suppress the growth of <i>M</i> . <i>marinum</i> , and addition of external LL-37 did not recover the bactericidal activity Next, we tested whether blocking autophagy using autophagy antagonists resulted in the suppression of intracellular killing of <i>M. marinum</i> . Growth of <i>M. marinum</i> in THP-1 cells was facilitated by two different autophagy antagonists, 3-MA or CQ (Fig. 6A).
 228 229 230 231 232 233 	Autophagy antagonists or <i>ATG5</i> deficiency could not suppress the growth of <i>M.</i> <i>marinum</i> , and addition of external LL-37 did not recover the bactericidal activity Next, we tested whether blocking autophagy using autophagy antagonists resulted in the suppression of intracellular killing of <i>M. marinum</i> . Growth of <i>M. marinum</i> in THP-1 cells was facilitated by two different autophagy antagonists, 3-MA or CQ (Fig. 6A). And this loss of activity cannot be rescued by addition of external LL-37, suggesting
 228 229 230 231 232 233 234 	Autophagy antagonists or ATG5 deficiency could not suppress the growth of M.marinum, and addition of external LL-37 did not recover the bactericidal activityNext, we tested whether blocking autophagy using autophagy antagonists resulted in thesuppression of intracellular killing of M. marinum. Growth of M. marinum in THP-1cells was facilitated by two different autophagy antagonists, 3-MA or CQ (Fig. 6A).And this loss of activity cannot be rescued by addition of external LL-37, suggestingthat autophagy is required for LL-37 to work. We also assessed the protective ability of
 228 229 230 231 232 233 234 235 	Autophagy antagonists or <i>ATG5</i> deficiency could not suppress the growth of <i>M.</i> <i>marinum</i> , and addition of external LL-37 did not recover the bactericidal activity Next, we tested whether blocking autophagy using autophagy antagonists resulted in the suppression of intracellular killing of <i>M. marinum</i> . Growth of <i>M. marinum</i> in THP-1 cells was facilitated by two different autophagy antagonists, 3-MA or CQ (Fig. 6A). And this loss of activity cannot be rescued by addition of external LL-37, suggesting that autophagy is required for LL-37 to work. We also assessed the protective ability of autophagy against <i>M. marinum</i> infection using cells from <i>ATG5</i> –deficient mice. Since

- 237 were used. In $ATG5^{-/-}$ MEF, increased *M. marinum* growth was observed compared to
- wild type MEF (Fig. 6B).

240 **DISCUSSION**

In this study we demonstrated that 1,25(OH)2D3 treatment reduced M. 241 marinum survival through elevated intracellular and extracellular levels of CAMP 242 protein production in human monocytic cell lineTHP-1. Strikingly CAMP induction by 243 1,25(OH)2D3 was almost completely shut down by shRNA VDR knocked down in 244 human monocytic cells line THP-1 and antimicrobial activity of 1,25(OH)2D3 was 245 246 diminished by shRNA VDR knocked down in THP-1, while antimicrobial activity induced by exogenous LL-37 remains intact with the same shRNA VDR knocked down 247 THP-1 cells. Furthermore addition of LL-37 to shRNA VDR knocked down THP-1 cells 248 249 recovered antimicrobial activity against *M. marinum* infection. These results strongly suggest that antimicrobial activity of 1,25(OH)2D3 against M. marinum is mediated by 250 induction of endogenous CAMP, which confirms the previous reports of studies using 251 $M. tbc^3$. 252 In this study we also explored the possible mechanism of antimicrobial activity 253 of CAMP in human monocytic cells against M. marinum infection. First we showed that 254 CAMP induced by 1,25(OH)2D3 co-localizes with autophagolysomes (LL-37/LC3, 255 LC3/LAMP1) in THP-1 cells after infection with M. marinum. In line with this it is of 256 note to mention the appearance of truncated form of CAMP (12KDa) in 1,25(OH)2D3 257

258	treated THP-1 cells after <i>M. marinum</i> infection (Fig.5A), which is consistent with the
259	findings of CAMP localization in autophagolysosome compartments. Furthermore we
260	found that 3-MA (autophagy inhibitor) and chloroquine (lysosomotropic agent that
261	prevents endosomal acidification and thus inhibits the formation of autophagolysosome)
262	prevent antimicrobial activity induced by CAMP against <i>M. marinum</i> infection in
263	THP-1 cells. In fact autophagy deficient cells (ATG5-/- MEF) failed to show the
264	antimicrobial activity induced by CAMP (endogenous CAMP induced by 1,25(OH)2D3
265	and exogenously LL-37) against <i>M. marinum</i> infection in THP-1 cells. These results
266	clearly indicate that both endogenous CAMP induced by 1,25(OH)2D3 and
267	exogenously added LL-37 exert antimicrobial activity against <i>M. marinum</i> by induction
268	of autophagolysosome.
269	Another finding of particular interest in this study is effect of 1,25(OH)2D3
270	treatment or exogenous LL-37 on inflammatory cytokine production in THP-1 cells
271	after <i>M. marinum</i> infection. As shown in Fig.3 we found that treatment with
272	1,25(OH)2D3 or LL-37 suppress IFN β , TNF α and IL-12p40, suggesting the
273	anti-inflammatory role of VitD-CAMP in <i>M. marinum</i> infection. The intracellular roles
274	of CAMP have been sought in many aspects, and previous studies using various cell
275	types, including macrophages, dendritic cells ¹⁸⁻²⁰ , fibroblasts ^{21,22} , keratinocytes ²³ ,

276	pancreatic islet cells ²⁴ , and kidney cells ²⁵ indicated that vitamin D can inhibit NF- κ B
277	signaling, suggesting an immune regulatory function of cathelicidin. Several
278	mechanisms have been proposed, including vitamin D-induced increased levels of
279	I κ B α^{22-24} , which interferes with the binding of NF- κ B subunits to promoter regulatory
280	areas ^{20,21,25} . In addition to this, it has been shown that 1,25(OH)2D3 can reduce the
281	transcription and secretion of protective IFN- γ , IL-12p40 and TNF- α in <i>M. tbc</i> infected
282	peripheral blood mononuclear cells (PBMCs) and macrophages by regulation of RelB ¹⁸
283	LL-37 suppresses the LPS-induced TNF- α response in PBMCs via NF- κ B down
284	regulation and RelB involvement ^{19,20} . Activation of autophagy by 1,25(OH)2D3 or
285	LL-37 may also limit proinflammatory cytokine production by targeting inflammasome
286	or inflammasome-independent modulation of cytokine response ²⁶⁻²⁸ . Exogenous LL-37
287	suppressed the LPS-induced TNF- α and chemokine MCP-1 responses in peripheral
288	blood mononuclear cells (PBMCs) ^{19,20,29} . LL-37 also functions as an immune regulator
289	to control inappropriate immune responses to pathogen infection such as septic shock.
290	Furthermore, LL-37 inhibits the binding of LPS and lipopolysaccharide-binding protein
291	(LBP) thereby suppressing the production of proinflammatory cytokines such as
292	TNF- $\alpha^{24,25}$. In line with these studies, our current results of CAMP in <i>M. marinum</i>
293	infected THP-1 cells also suggest that cathelicidin may have unique suppressive role on

294	innate immune mediator such as IFN α , TNF α and IL-12, although further studies will
295	be needed to explore the precise mechanism of this anti-inflammatory role of CAMP in
296	human monocytic cells.
297	In summary we showed that both intracellular/extracellular CAMP/LL-37
298	suppress <i>M. marinum</i> infection via autophagolysosome in human monocytes and
299	1,25(OH)2D3 plays an important role in <i>M. marinum</i> infection. 1,25(OH)2D3
300	insufficiency is known to cause infection and relapse of tuberculosis ³⁰ . Current study
301	demonstrates that 1,25(OH)2D3 has an important protective role against the infection
302	with another mycobacterium species, M. marinum, in addition to M. tbc. Analogues of
303	1,25(OH)2D3, such as calcipotriol, is used for the treatment of dermatologic diseases
304	such as psoriasis. Also, ultraviolet-light (UV) therapy is a common practice for various
305	dermatologic diseases. Our results might suggest that topical 1,25(OH)2D3 analogues
306	as well as UV therapy could be useful supplemental therapies for superficial infection of
307	M. marinum in combination with regular antibiotic therapy. Considering that activated
308	Vit D3 induced CAMP increases antimicrobial activity via autophagolysosome, while
309	down regulating pro-inflammatory cytokine production, topical therapy with active Vit
310	D3 may benefit to the prevention of immunohistopathological tissue damages.

311 Figure legends

312 Figure 1. LL-37 did not directly kill the cultured *M. marinum*. A. Growth curves of

- 313 *M. marinum* in 7H9 broth medium containing LL-37 (10 [g/mL), or DMSO (0.1%).
- OD_{570} was measured at time indicated. Data points represent the mean of five separate
- experiments. B. Comparison of CFU at 72 hours after addition of LL-37. M. marinum
- growth in 7H9 broth was not suppressed by LL-37 directly treatment (n=3).

317

Figure 2. *M. marinum* growth in THP-1 was suppressed by treatment with

319 **1,25(OH)2D3 or exogenous LL-37. A.** Comparison of CFU 72 hours after infection of

- 320 *M. marinum* (MOI: 1) in THP-1 cells. *M. marinum* growth in THP-1 was suppressed by
- 321 1,25(OH)2D3 or LL-37 treatment (n=3, *, **p<0.01). **B.** THP-1 cells did not suppress
- intracellular *M. marinum* growth and live bacilli were observed in the cytoplasm. *M.*
- 323 *marinum* bodies (seen in control cells in the leftmost panel) were degraded in the cells
- cultured with 1,25(OH)2D3 or LL-37 (Ziehl-Neelsen staining).

325

Figure 3. Intracellular CAMP is increased in 1,25(OH)2D3–treated THP-1 cells 24
 hours after *M. marinum* infection. A. mRNA of cathelicidin is strongly up regulated

328	by 1,25(OH)2D3 in uninfected THP-1 cells. <i>M. marinum</i> infection (MOI: 1) in the
329	presence of 1,25(OH)2D3 further promoted the induction of cathelicidin. IFN- β , TNF- α ,
330	and IL-12p40 induced by <i>M. marinum</i> infection was suppressed by the addition of
331	1,25(OH)2D3, or LL-37. B. Proteins in culture supernatants were measured by western
332	blotting or ELISA. CAMP expression was measured by western blotting and M.
333	marinum infected THP-1 cells secreted higher levels of LL-37 in culture supernatant
334	compared to controls. Concentrations of IFN- β , TNF- α , IL-12p40 in the supernatant
335	wee measured by ELISA and showed proportional changes consistent with the mRNA
336	data.
337	
338	Figure 4. Autophagy is induced in 1,25(OH)2D3 and LL-37–treated THP-1 cells 24
339	hours after <i>M. marinum</i> infection. A. Immunofluorescence staining 24 hours after <i>M</i> .
340	marinum infection. Intracellular CAMP (green) was increased in 1,25(OH)2D3-treated
341	THP-1 cells, and partly co-localized with LC3 (red), a protein localized on the
342	autophagosome membrane. B. Immunofluorescence staining 24 hours after M. marinum
343	infection. LC3 (green) and LAMP1 (red), a main glycoprotein in the lysosomal
344	membrane, were co-localized in 1,25(OH)2D3 or LL-37-treated THP-1 cells after M.

345 *marinum* infection.

347	Figure 5. Blocking VDR by shRNA suppressed intracellular killing of <i>M. marinum</i> .
348	A. Western blotting of THP-1 cell lysates treated with VDR-shRNA showed marked
349	reduction of CAMP in cells in the presence of 10 nM 1,25(OH)2D3 compared to
350	control-shRNA treated cells. In control cells infected with M. marinum (MOI: 1), a
351	truncated form of CAMP (arrow head) was abundant compared with
352	1,25(OH)2D3-treated uninfected controls. B. Cells treated with VDR-shRNA showed
353	increased CFU upon infection with M. marinum (MOI: 10) in the presence of 10nM
354	1,25(OH)2D3 but rescued by external LL37 (n=3, *,** p<0.05).
355	
356	Figure 6. Autophagy antagonists or ATG5 deficiency suppressed intracellular
357	killing of <i>M. marinum</i> . A. Comparison of CFU 72 hours after infection of <i>M. marinum</i>
358	(MOI: 10) in THP-1 cells. <i>M. marinum</i> growth in THP-1 was significantly promoted by
359	3-MA or CQ and cannot be rescued by addition of external LL-37. (n=3, *, ** p <0.01).
360	B. Comparison of CFU 72 hours after infection of <i>M. marinum</i> (MOI: 10) in mouse
361	embryonic fibroblast (MEF) cells. <i>M. marinum</i> growth in <i>ATG5^{-/-}</i> MEFs was
362	significantly increased compared to controls (n=3, *p<0.05).
363	

References

365	1	Wang TT, Nestel FP, Bourdeau V et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct
366		inducer of antimicrobial peptide gene expression. J Immunol 2004; 173: 2909-12.
367	2	Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP)
368		gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by
369		1,25-dihydroxyvitamin D3. FASEB J 2005; 19: 1067-77.
370	3	Yuk JM, Shin DM, Lee HM et al. Vitamin D3 induces autophagy in human
371		monocytes/macrophages via cathelicidin. Cell Host Microbe 2009; 6: 231-43.
372	4	Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell; 147: 728-41.
373	5	Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. <i>Nature</i> ; 469:
374		323-35.
375	6	Virgin HW, Levine B. Autophagy genes in immunity. Nat Immunol 2009; 10: 461-70.
376	7	Nakatogawa H, Suzuki K, Kamada Y et al. Dynamics and diversity in autophagy mechanisms:
377		lessons from yeast. Nat Rev Mol Cell Biol 2009; 10: 458-67.
378	8	Fabri M, Modlin RL. A vitamin for autophagy, Vol. 6. 2009.
379	9	Gutierrez MG, Master SS, Singh SB et al. Autophagy is a defense mechanism inhibiting BCG
380		and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004; 119: 753-66.
381	10	Singh SB, Davis AS, Taylor GA et al. Human IRGM induces autophagy to eliminate
382		intracellular mycobacteria. Science 2006; 313: 1438-41.
383	11	Jarzembowski JA, Young MB. Nontuberculous mycobacterial infections. Arch Pathol Lab Med
384		2008; 132 : 1333-41.
385	12	Tortoli E. Clinical manifestations of nontuberculous mycobacteria infections. Clin Microbiol
386		Infect 2009; 15: 906-10.
387	13	Stamm LM, Brown EJ. Mycobacterium marinum: the generalization and specialization of a
388		pathogenic mycobacterium. Microbes Infect 2004; 6: 1418-28.
389	14	Tobin DM, Ramakrishnan L. Comparative pathogenesis of Mycobacterium marinum and
390		Mycobacterium tuberculosis. Cell Microbiol 2008; 10: 1027-39.
391	15	Collins CA, De Maziere A, van Dijk S et al. Atg5-independent sequestration of ubiquitinated
392		mycobacteria. PLoS Pathog 2009; 5: e1000430.
393	16	Kuma A, Hatano M, Matsui M et al. The role of autophagy during the early neonatal starvation
394		period. Nature 2004; 432: 1032-6.
395	17	Deguchi E, Imafuku S, Chou B et al. Topical vitamin D3 analogues induce thymic stromal
396		lymphopoietin and cathelicidin in psoriatic skin lesions. Br J Dermatol 2012.
397	18	Dong X, Craig T, Xing N et al. Direct transcriptional regulation of RelB by
398		1alpha,25-dihydroxyvitamin D3 and its analogs: physiologic and therapeutic implications for

399		dendritic cell function. J Biol Chem 2003; 278: 49378-85.
400	19	Dong X, Lutz W, Schroeder TM et al. Regulation of relB in dendritic cells by means of
401		modulated association of vitamin D receptor and histone deacetylase 3 with the promoter. Proc
402		Natl Acad Sci U S A 2005; 102: 16007-12.
403	20	D'Ambrosio D, Cippitelli M, Cocciolo MG et al. Inhibition of IL-12 production by
404		1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional
405		repression of the p40 gene. J Clin Invest 1998; 101: 252-62.
406	21	Harant H, Wolff B, Lindley IJ. 1Alpha,25-dihydroxyvitamin D3 decreases DNA binding of
407		nuclear factor-kappaB in human fibroblasts. FEBS Lett 1998; 436: 329-34.
408	22	Sun J, Kong J, Duan Y et al. Increased NF-kappaB activity in fibroblasts lacking the vitamin D
409		receptor. Am J Physiol Endocrinol Metab 2006; 291: E315-22.
410	23	Riis JL, Johansen C, Gesser B et al. 1alpha,25(OH)(2)D(3) regulates NF-kappaB DNA binding
411		activity in cultured normal human keratinocytes through an increase in IkappaBalpha expression.
412		Arch Dermatol Res 2004; 296: 195-202.
413	24	Giarratana N, Penna G, Amuchastegui S et al. A vitamin D analog down-regulates
414		proinflammatory chemokine production by pancreatic islets inhibiting T cell recruitment and
415		type 1 diabetes development. J Immunol 2004; 173: 2280-7.
416	25	Deb DK, Chen Y, Zhang Z et al. 1,25-Dihydroxyvitamin D3 suppresses high glucose-induced
417		angiotensinogen expression in kidney cells by blocking the NF-{kappa}B pathway. Am J
418		Physiol Renal Physiol 2009; 296: F1212-8.
419	26	Crisan TO, Plantinga TS, van de Veerdonk FL et al. Inflammasome-independent modulation of
420		cytokine response by autophagy in human cells. PLoS One; 6: e18666.
421	27	Nakahira K, Haspel JA, Rathinam VA et al. Autophagy proteins regulate innate immune
422		responses by inhibiting the release of mitochondrial DNA mediated by the NALP3
423		inflammasome. Nat Immunol; 12: 222-30.
424	28	Shi CS, Shenderov K, Huang NN et al. Activation of autophagy by inflammatory signals limits
425		IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol; 13:
426		255-63.
427	29	Wang G, Elliott M, Cogen AL et al. Structure, Dynamics, and Antimicrobial and Immune
428		Modulatory Activities of Human LL-23 and Its Single-Residue Variants Mutated on the Basis of
429		Homologous Primate Cathelicidins. Biochemistry; 51: 653-64.
430	30	Luong K, Nguyen LT. Impact of vitamin D in the treatment of tuberculosis. Am J Med Sci; 341:
431		493-8.
432		
433		

Figure 1.

Figure 2.

B)

Mm

Mm+1,25D3

Mm+LL37

Figure 3.

Mock +1,25D3 Mm Mm+1,25D3

Figure 4.

A)

Mm

Mm+1,25D3

LL37

Merge

LC3

B)

Mm

Mm+1,25D3

Mm+LL37

LAMP1

LC3

Merge

Figure 5.

B)

Figure 6.

B)

