阿蘇 -4 火砕流堆積物中の火山ガラスと軽石の蛍光 X 線分析

柚原 雅樹¹⁾・松田 芳諒¹⁾・平塚 晃大¹⁾・宮崎 桂輔¹⁾

(平成 22 年 5 月 31 日受理)

X-ray Fluorescence Analysis of Volcanic Glass and Pumice from the Aso-4 Pyroclastic Flow Deposits

Masaki Yuhara¹⁾, Yoshiaki Matsuda¹⁾, Akihiro Hiratsuka¹⁾, and Keisuke Miyazaki¹⁾

(Received May 31, 2010)

Abstract

We analyzed for major and trace element compositions of volcanic glasses and pumices from the Aso-4 pyroclastic flow deposits collected from Antoku, Chugangi and Fukui, Fukuoka Prefecture, from Jikumaru and Funagawa, Oita Prefecture, by using X-ray fluorescence spectrometry. The volcanic glasses were separated by magnetic separation. The chemical compositions of volcanic glasses and pumices are with in rage of reported data. Thus, we consider them to be good chemical data. The volcanic glasses indicate narrow range chemical composition. This suggests that silicate liquid had uniform chemical composition in magma just before Aso-4 eruption.

Key words : X-ray fluorescence analysis, Aso-4 pyroclastic flow deposits, volcanic glass, pumice, major and trace element.

はじめに

火山ガラスの化学組成は、テフラの同定に大きく貢 献するだけでなく、給源マグマの化学的性質を知る上 でも重要なデータである.火山ガラスの化学分析の主 流となっている EPMA による分析は、ごくわずかな 量の試料で測定が可能であるが、主成分元素測定が 中心であり、若干の微量元素が測定可能であるに過 ぎない、蛍光 X 線分析法では、ある程度の純化した 試料が必要であるが、主成分元素に加えて多数の微量 元素の定量が可能である.理学部に設置されている蛍 光 X 線分析装置では、現在のところ 17 微量元素の測 定が可能である(柚原・田口、2003a、2003b、2006; 柚原ほか、2004;高本ほか、2005). EPMA による分 析では、個々の火山ガラス片の化学組成やそのばらつ きの程度の把握が可能であるが、蛍光 X 線分析では、 数 g の分析試料を調製するため、対象とする火山灰 の火山ガラスの平均組成しか把握できない.この火山 ガラスの平均組成は、マグマの液体相の組成を近似し ていると考えられている(黒川,2005).そこで、阿 蘇 4 火砕流堆積物を対象として、蛍光 X 線分析法に よる火山ガラスの化学分析の有効性と、それに基づい たマグマの化学組成の検討を試みた.阿蘇 4 火砕流 堆積物を対象としたのは、北部九州に広く分布するこ と(Watanabe, 1978; Fig. 1) や、比較的層厚が厚 いため野外において容易に認定しやすく、試料も多量 に採取可能なこと、などの理由による.また、阿蘇 4 火砕流堆積物およびそれと同時に形成された降下火山

¹⁾ 福岡大学理学部地球圏科学科, 〒 814-0180 福岡市城南区七隈 8-19-1
 Department of Earth System Science, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan

Fig. 1. Distribution of the Aso-4 pyroclastic flow deposits and location of sampling points (modified from Machida and Arai, 2003).

灰(阿蘇-4火山灰)は阿蘇-4テフラと呼ばれ、ほぼ 日本全域に分布し、周辺海域においても確認されてい る(町田・新井,2003)ため、阿蘇-4テフラは第四 紀後期における重要な示標テフラの一つとされている (町田・新井,2003).阿蘇-4テフラの同定・対比に おいて、それに含まれる火山ガラスの化学組成が数多 く報告されている(Furuta et al.,1986;八木・早田, 1989;白井ほか,1997;青木ほか,2000;青木・新井, 2000).一方、阿蘇-4火砕流堆積物中の火山ガラスの 分析値の報告は非常に少なく、今後は阿蘇-4火砕流 堆積物中の火山ガラスの化学分析値の蓄積も必要であ ると考えられる.

阿蘇-4火砕流堆積物のユニット区分

阿蘇火山は九州中央部に位置し、直径約 20km の

カルデラと中央火口丘群からなる複成火山である. 阿蘇カルデラを給源とする火砕噴火サイクルが約 30万年前以降4回あり、古い方から Aso-1, Aso-2, Aso-3, Aso-4と呼ばれている. Aso-4 サイクルの噴 出物である阿蘇-4火砕流堆積物は、噴火中心から 180km 以上も離れたところまで到達しており (Fig. 1; Watanabe, 1978;小野・渡辺, 1983;渡辺, 1986), 九州における第四紀後期編年の示標層として重要視 されている (郷原, 1963). 主に斜方輝石普通角閃 石デイサイト質軽石火山灰からなり,数十mをこえ る厚い層厚をなすところでは、下部が溶結凝灰岩と なっている場合が多い. 阿蘇-4 火砕流堆積物は岩相・ 岩質からいくつかのサブユニットに区分されている (Fig.2). 阿蘇カルデラの西側では8つのサブユニッ トに (Watanabe, 1978), 阿蘇カルデラ東側の竹田 地域では4A, 4Bの2つのサブユニットに(小野ほ

Fig. 2. Summary of eruptive units in the Aso-4 pyroclastic flow deposits based on previously published works.

か、1977)、大分県東部地域(渡辺、1986;星住ほか、 1988;寺岡ほか, 1990, 1992;星住・森下, 1993;酒 井ほか、1993;吉岡ほか、1997)では4A、4Tの2 つのサブユニットに区分されている(Fig. 2). 阿蘇カ ルデラの北側の宮原地域では、4A、4T、4B が分布す る (鎌田, 1997). このうち, 4A は Watanabe (1978) の八女軽石流堆積物に、4T は Watanabe (1978)の 鳥栖オレンジ軽石流堆積物に相当する(星住ほか, 1988;寺岡ほか, 1990, 1992;星住・森下, 1993;酒 井ほか, 1993). 宮崎県北部にも 4A が分布する (今 井ほか, 1982). Watanabe (1978) の残りの6つのサ ブユニットは主にカルデラ西側に,小野ほか(1977) の4Bは主にカルデラ東側に分布する.カルデラ北部 では,4T の直上に九ノ峰スコリア流堆積物が分布す る (鎌田, 1997). また, 大分地域では, 4A の一部 に肥猪火山灰流堆積物である可能性が高い層準が認め られている(吉岡ほか, 1997).しかしながら,カル デラ西部地域においても、Watanabe (1978)のサブ ユニットに対比させず,一括して阿蘇-4火砕流堆積 物として記載する場合(唐木田ほか, 1994)や溶結部 と非溶結部に区分する場合(富田ほか,2008)もある.

試料および分析方法

1. 試料採取および調整法

火山ガラスを分離するため,非溶結の阿蘇-4火砕 流堆積物を採取した.

試料採取は,福岡県筑紫郡那珂川町安徳,田川郡添

田町中元寺,朝倉郡東峰村福井,大分県竹田市緒方町 軸丸および鮒川で行った(Fig. 1).以下に,各試料採 取地点における産状を記述する.

(1)安徳

07090801 : (N33°29. 756', E130°25. 786')

層厚 3m+の暗灰色の軽石質火山灰で,5mm 以下の 軽石を多量に含み(Fig. 3),最大5cm に達する軽石 も含まれる.本質岩片も含まれる.N86°W,25°Nの ラミナが認められる.試料は露頭下部から1m上部付 近で採取した.

07092201 : (N33°29. 592', E130°25. 560')

層厚 6m+の暗灰色の軽石質火山灰で,5mm 以下の 軽石を多量に含み(Fig.3),最大5cm に達する軽石 も含まれる.本質岩片も含まれる.N76°W,11°Nの ラミナが認められる.試料は露頭下部から1.5m上部 付近で採取した.

07092202 : (N33°29. 795', E130°25. 624')

層厚 2.5m+の暗灰色の軽石質火山灰で,5mm 以下 の軽石を多量に含み(Fig. 3),最大 2cm に達する軽 石も含まれる.本質岩片も含まれる.N9°E,12°Wの ラミナが認められる.試料は露頭下部から1m上部付 近で採取した.

(2)中元寺

07090301 : (N33°33. 127', E130°51. 007')

層厚 7m+の暗灰色の軽石質火山灰で,10 mm 程度 の軽石を多量に含み(Fig. 3),最大13cm に達する軽 石も含まれる.本質岩片も含まれる.N34°E,18°NE のラミナが認められる.試料は露頭下部から1.5m 上

Fig. 3. Photographs of the Aso-4 pyroclastic flow deposits at outcrops.

Fig. 3. (continued)

Fig. 3. (continued)

部付近で採取した.

07092701 : (N33°33. 321', E130°50. 479')

層厚 2.5m+の暗灰色の軽石質火山灰で,最大 6cm の軽石を多量に含む (Fig. 3).本質岩片も含まれる. N34°E, 18°NE のラミナが認められる. 試料は露頭下 部から 1m 上部付近で採取した.

07092714 : (N33°33. 230', E130°50. 565')

層厚 2.5m+の暗灰色の軽石質火山灰で,最大 6cm に達する軽石を多量に含み(Fig. 3),本質岩片も含ま れる. 試料は露頭下部から 1m 上部付近で採取した. (3)福井

07090312 : (N33°22. 735', E130°52. 677')

層厚 5m+の暗灰色の軽石質火山灰で,2cm 程度の 軽石を多量に含み(Fig. 3),最大10cm に達する軽 石も含まれる.本質岩片も多量に含まれる.N86°W, 32°N のラミナが認められる.試料は露頭下部から1m 上部付近で採取した.

(4)軸丸

09082301 : (N32°52. 111', E131°27. 193')

層厚 6m+の暗灰色の軽石質火山灰で、4~5cmの 軽石を多量に含み(Fig. 3),最大 70cm に達する軽石 も含まれる.本質岩片も多量に含む.弱溶結の火砕流 堆積物である.ほぼ水平のラミナが認められる.試料 は露頭下部から3~4m上部の部分から採取した. (5)鮒川

09082303A, B: (N32°57.597', E131°28.322')

層厚 6m+の暗灰色の軽石質火山灰で,1~2cmの 軽石を多量に含み(Fig. 3),最大 25cm に達する軽石 も含まれる.本質岩片も含まれる.ほぼ水平のラミ ナが認められる.試料は露頭下部から 50cm 上部付近 (A),および 4m 上部付近(B)の2ヶ所で採取した.

今回採取した試料は、分布から八女軽石流堆積物 ならびに4Aに相当すると考えられる.採取した試料 (約2kg)を風乾後、ふるいにかけ、180~125µmの 部分からアイソダイナミックセパレーターを用いて、 火山ガラスを分離・精製した.この際、一部の試料に ついては、軽石型火山ガラスに富むフラクションとバ ブル型火山ガラスに富むフラクションに分離した.ま た、採取試料に含まれる軽石も分析試料とした(Fig. 4).ほとんどの軽石試料は、単体の軽石を用いたが、 07092714および 07090312は分析に必要な大きな軽石 を含んでいなかったため、小型の軽石を集め分析試料

Fig. 4. Photographs of pumices in the Aso-4 pyroclastic flow deposits.

とした. これらの分析試料は, 蒸留水による超音波洗 浄後, 110℃で乾燥した. 火山ガラスはメノウ乳鉢で, 軽石はタングステンカーバイト製のボールミルで粉砕 した.

2. 分析方法

火山ガラスおよび軽石に含まれる主成分10元素
(SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅) と微量成分17元素(As, Ba, Co, Cr, Cu, Ga, Nb, Ni, Pb, Rb, S, Sr, V, Th, Y, Zn, Zr) を, 福岡大学理学部に設置の理学
電機工業社製蛍光X線分析装置 ZSX100e により測定した. 試料調整および測定方法は, 柚原・田口(2003a, b, 2006), 柚原ほか(2004), 高本ほか(2005) に従った. 軽石は試料粉砕の際にタングステンカーバイト製ボールミルを使用したため, Coの測定はおこなっていない. 測定結果を Tables 1, 2 に示す.

結果と考察

1. 蛍光 X 線分析の有効性

火山ガラスの SiO₂ 含有量は 67.6 ~ 69.3wt%で, 試 料 09082301 は SiO2 含有量がやや低いが、その他の ものは 68.3 ~ 69.3wt%であり、これまで EPMA 測定 により報告された火山ガラスの組成範囲(町田ほか, 1985;八木・早田, 1989;富田ほか, 2008)や軽石, 溶結凝灰岩および溶結凝灰岩中の本質レンズの組成範 囲(小野ほか, 1977; Watanabe, 1979; 木村ほか, 1991;鎌田, 1997; Hunter, 1998) に比べて, 非常 に狭い範囲に集中する (Table 1; Fig. 5). 同一試料 から分離した軽石型火山ガラスに富むフラクションと バブル型火山ガラスに富むフラクションでは、一部試 料の Fe₂O₃*, Sを除き,極めて類似した化学組成を示 す (Table 1). これに対して, 軽石の SiO₂ 含有量は 65.0~67.7wt%で、これまでに報告された分析値の組 成範囲に重複し(Figs. 5, 6),火山ガラスの組成範囲 よりも広い. 今回蛍光 X 線分析により測定した火山 ガラスの化学組成は,EPMA により測定された火山 ガラスの組成範囲に一部重複し,これらと軽石,溶結 凝灰岩および溶結凝灰岩中の本質レンズの間にプロッ トされる (Fig. 5). 火山ガラスの水和によって Na₂O が減少することが指摘されている(Watanabe, 1979) が、分離した火山ガラス中に白く濁った火山ガラスは ほとんど含まれず、L.O.I.も約3 wt%と一定で、また Na₂O含有量も非常に狭い範囲内にあることから、水 和した火山ガラスは分離過程で除去されていると考え られる. したがって、今回得られた分析値は、火山ガ ラスの平均化学組成を良く示していると考えられる.

2. 阿蘇4噴火時のマグマの化学組成

黒川(2005)によっても指摘されているように、火 山ガラスの平均組成は、噴火直前のマグマの液体相の 組成を近似していると考えられている. これに対し て、軽石や溶結凝灰岩の化学組成は、液体相とその中 に存在していた結晶粒(すなわち斑晶)からなるマグ マ全体の組成を示していると考えられる. これまでに 報告されている分析値を含めると、軽石は幅広い組成 範囲を示すのに対し、今回得られた火山ガラスの平均 組成は、採取地点がかなり広範囲にわたる(Fig. 1) にもかかわらず極めて狭い範囲に集中する(Figs. 5, 6). このことは、阿蘇-4火砕流として噴火したマグマの 液体相の化学組成は、極めて均質であったことを示唆 する. 軽石や溶結凝灰岩が火山ガラスよりも SiO₂含 有量が低く、幅広い組成範囲を示すのは、均質な液体 相とより SiO₂ 含有量の低い輝石や角閃石などの結晶 粒が任意の割合で混合しているためであろう.

謝 辞

本論文は松田芳諒の福岡大学理学部地球圏科学科に おける平成21年度の卒業研究の一部を発展させたも のである.研究を進めるにあたり,福岡大学理学部地 球圏科学科の田口幸洋教授,奥野 充准教授,鮎沢 潤博士には様々なご意見,御討論をいただいた.佐賀 大学文化教育学部の角縁 進准教授には査読をしてい ただき,有益な助言をいただいた.以上の方々に,記 して感謝の意を表します.

文 献

- 青木かおり・新井房夫,2000, 三陸沖海底コア KH94-3, LM-8の後期更新世テフラ層序. 第四紀 研究,39,107-120.
- 青木かおり・山本浩文・山内守明,2000,「みらい」 MR98-03 次航海及び MR99-K04 次航海で採取さ れた海底コアの第四紀後期テフラ層序.海洋科学 技術センター試験研究報告,no.41,49-55.
- Furuta, T., Fujioka, K. and Arai, F., 1986, Widespread submarine tephras around Japan –petrographic and chemical properties. *Marine Geol.*, 72, 125-142.
- 郷原保真, 1963, 九州地方の Tephrochronology. 第 四紀研究, 3, 123-138.
- 星住英夫・森下祐一, 1993, 豊岡地域の地質.地域地 質研究報告(5万分の1地質図幅).地質調査所, 75p.
- 星住英夫・小野晃司・三村弘二・野田徹郎, 1988, 別

_	225	_
---	-----	---

Location	Antoku					Chuganji	
Sample No.	07090801g	07092201pg	07092201bg	07092202bg	07092202pg	07090301pg	07090301bg
SiO ₂ (wt.%)	68.88	68.50	68.85	69.16	68.54	68.67	69.12
TiO ₂	0.43	0.45	0.44	0.43	0.44	0.44	0.42
Al_2O_3	14.83	15.07	14.85	14.70	14.80	15.00	14.71
Fe ₂ O ₂ *	1.90	1.92	1.77	1.62	2.10	1.82	1.63
MnO	0.08	010	0.09	0.09	0.12	0.10	0.09
MgO	0.41	0.10	0.03	0.05	0.45	0.17	0.05
CaO	117	1.41	1.26	1.26	1.34	1.35	1.26
Na O	1.17	1.41	1.20	1.20	1.34	1.33	1.20
K O	4.20	4.00	4.04	4.45	4.30	4.00	4.57
R ₂ 0	4.45	4.30	4.44	4.45	4.39	4.45	4.47
P_2O_5	0.03	0.05	0.04	0.03	0.04	0.05	0.05
L.O.I.	3.27	2.95	2.99	2.82	2.80	2.91	2.84
1 otal	99.73	99.64	99.50	99.46	99.46	99.57	99.41
As (ppm)	11	n.d.	<4	12	12	n.d.	n.d.
Ва	740	755	778	755	777	765	757
Со	<5	n.d.	<5	<5	<5	<5	<5
Cr	<4	<4	<4	<4	<4	<4	n.d.
Cu	4	6	6	4	3	6	4
Ga	17	17	18	18	17	18	18
Nb	13	13	14	13	14	13	14
Ni	6	5	6	7	5	5	5
Pb	18	11	10	20	20	10	10
Rb	153	149	151	150	148	151	153
S	156	262	210	198	245	252	194
Sr	179	226	200	199	216	218	194
Th	17	6	6	17	17	6	6
V	21	20	17	19	16	17	17
Y	36	34	34	34	34	34	34
7n	51	57	51	50	53	50	51
Zn Zr	303	283	203	203	285	285	203
21	000	200	250	250	200	200	250
Location	Chuganii		Fukui		Iikumaru	Funagawa	
Location Sample No.	Chuganji 07092701g	07092714g	Fukui 07090312bg	07090312pg	Jikumaru 09082301g	Funagawa 09082303Ag	09082303Bg
Location Sample No. SiO ₂ (wt.%)	Chuganji 07092701g 69.24	07092714g 68.70	Fukui 07090312bg 69.27	07090312pg 68.82	Jikumaru 09082301g 67.64	Funagawa 09082303Ag 68.35	09082303Bg 68.27
Location Sample No. SiO ₂ (wt.%) TiO ₂	Chuganji 07092701g 69.24 0.42	07092714g 68.70 0.44	Fukui 07090312bg 69.27 0.42	07090312pg 68.82 0.43	Jikumaru 09082301g 67.64 0.49	Funagawa 09082303Ag 68.35 0.46	09082303Bg 68.27 0.45
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₂	Chuganji 07092701g 69.24 0.42 14.71	07092714g 68.70 0.44 14.90	Fukui 07090312bg 69.27 0.42 14 70	07090312pg 68.82 0.43 14 90	Jikumaru 09082301g 67.64 0.49 15.55	Funagawa 09082303Ag 68.35 0.46 15.46	09082303Bg 68.27 0.45 15.21
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₄ *	Chuganji 07092701g 69.24 0.42 14.71 1.55	07092714g 68.70 0.44 14.90 1.88	Fukui 07090312bg 69.27 0.42 14.70 1.69	07090312pg 68.82 0.43 14.90 1.80	Jikumaru 09082301g 67.64 0.49 15.55 2.23	Funagawa 09082303Ag 68.35 0.46 15.46 1.50	09082303Bg 68.27 0.45 15.21 1.69
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08	07092714g 68.70 0.44 14.90 1.88 0.10	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10	07090312pg 68.82 0.43 14.90 1.80 0.10	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10	09082303Bg 68.27 0.45 15.21 1.69 0.10
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MrO	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37	07092714g 68.70 0.44 14.90 1.88 0.10 0.49	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42	07090312pg 68.82 0.43 14.90 1.80 0.10 0.48	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20	07090312pg 68.82 0.43 14.90 1.80 0.10 0.48 1.31	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO No O	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15 4.37	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32 4.26	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40	07090312pg 68.82 0.43 14.90 1.80 0.10 0.48 1.31 4.28	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K O	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15 4.37 4.51	$\begin{array}{c} 07092714g\\ 68.70\\ 0.44\\ 14.90\\ 1.88\\ 0.10\\ 0.49\\ 1.32\\ 4.26\\ 4.42\\ \end{array}$	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52	07090312pg 68.82 0.43 14.90 1.80 0.10 0.48 1.31 4.28 4.47	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.21	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.26	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P O	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15 4.37 4.51 0.02	$\begin{array}{c} 07092714g\\ 68.70\\ 0.44\\ 14.90\\ 1.88\\ 0.10\\ 0.49\\ 1.32\\ 4.26\\ 4.43\\ 0.04\\ \end{array}$	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.02	07090312pg 68.82 0.43 14.90 1.80 0.10 0.48 1.31 4.28 4.47 0.04	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07
$\begin{tabular}{ c c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.%) \\ \hline TiO_2 \\ Al_2O_3 \\ Fe_2O_3^* \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ LOU \\ \hline LOU \\ \hline \end{tabular}$	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15 4.37 4.51 0.03 2.15	$\begin{array}{c} 07092714g\\ 68.70\\ 0.44\\ 14.90\\ 1.88\\ 0.10\\ 0.49\\ 1.32\\ 4.26\\ 4.43\\ 0.04\\ 2.24\end{array}$	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.03 2.72	07090312pg 68.82 0.43 14.90 1.80 0.10 0.48 1.31 4.28 4.47 0.04 2.02	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 2.12	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 2.34	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 2.10
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Tutal	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15 4.37 4.51 0.03 3.15 0055	$\begin{array}{c} 07092714g\\ 68.70\\ 0.44\\ 14.90\\ 1.88\\ 0.10\\ 0.49\\ 1.32\\ 4.26\\ 4.43\\ 0.04\\ 3.24\\ 0.04\\ 0.20\\ \end{array}$	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.03 2.72 0.047	07090312pg 68.82 0.43 14.90 1.80 0.10 0.48 1.31 4.28 4.47 0.04 2.93 0056	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 007 50	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 007	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 3.19 00.50
Location Sample No. SiO_2 (wt.%) TiO_2 Al_2O_3 $Fe_2O_3^*$ MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15 4.37 4.51 0.03 3.15 99.58	$\begin{array}{r} 07092714g\\ 68.70\\ 0.44\\ 14.90\\ 1.88\\ 0.10\\ 0.49\\ 1.32\\ 4.26\\ 4.43\\ 0.04\\ 3.24\\ 99.80\\ 11\end{array}$	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.03 2.72 99.47	07090312pg 68.82 0.43 14.90 1.80 0.10 0.48 1.31 4.28 4.47 0.04 2.93 9.956	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 99.79	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 99.79	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 3.19 99.59
$\begin{tabular}{ c c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.%) \\ \hline TiO_2 \\ Al_2O_3 \\ Fe_2O_3^* \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ L.O.I. \\ \hline Total \\ As (ppm) \\ \hline P \\ D \\ CaD \\ As (ppm) \\ \hline CaD \\ As (ppm) \\ CaD \\ As (ppm) \\ \hline CaD \\ As (ppm) \\ $	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15 4.37 4.51 0.03 3.15 99.58 11	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32 4.26 4.43 0.04 3.24 99.80 11	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.03 2.72 99.47 12	07090312pg 68.82 0.43 14.90 1.80 0.10 0.48 1.31 4.28 4.47 0.04 2.93 99.56 11	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 99.79 10	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 99.79 10	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.14 4.26 0.07 3.19 99.59 10
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total As (ppm) Ba	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15 4.37 4.51 0.03 3.15 99.58 11 776	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32 4.26 4.43 0.04 3.24 99.80 11 747	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.03 2.72 99.47 12 769	07090312pg 68.82 0.43 14.90 1.80 0.10 0.48 1.31 4.28 4.47 0.04 2.93 99.56 11 766	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 99.79 10 752	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 99.79 10 748	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 3.19 99.59 10 755
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total As (ppm) Ba Co	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15 4.37 4.51 0.03 3.15 99.58 11 776 <5	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32 4.26 4.43 0.04 3.24 99.80 11 747 n.d.	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.03 2.72 99.47 12 769 <5	$\begin{array}{c} 07090312 pg \\ 68.82 \\ 0.43 \\ 14.90 \\ 1.80 \\ 0.10 \\ 0.48 \\ 1.31 \\ 4.28 \\ 4.47 \\ 0.04 \\ 2.93 \\ 99.56 \\ 11 \\ 766 \\ < 5 \\ \end{array}$	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 99.79 10 752 <5	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 99.79 10 748 <5	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 3.19 99.59 10 755 n.d.
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total As (ppm) Ba Co Cr	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15 4.37 4.51 0.03 3.15 99.58 11 776 <5 <4	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32 4.26 4.43 0.04 3.24 99.80 11 747 n.d. n.d.	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.03 2.72 99.47 12 769 <5 4	$\begin{array}{c} 07090312 pg \\ 68.82 \\ 0.43 \\ 14.90 \\ 1.80 \\ 0.10 \\ 0.48 \\ 1.31 \\ 4.28 \\ 4.47 \\ 0.04 \\ 2.93 \\ 99.56 \\ 11 \\ 766 \\ <5 \\ <4 \end{array}$	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 99.79 10 752 <5 <4	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 99.79 10 748 <5 5	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 3.19 99.59 10 755 n.d. 4
$\begin{tabular}{ c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.%) \\ TiO_2 \\ Al_2O_3 \\ Fe_2O_3^* \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ L.O.I. \\ \hline Total \\ \hline As (ppm) \\ Ba \\ Co \\ Cr \\ Cu \\ \hline \end{tabular}$	$\begin{array}{c} {\rm Chuganji} \\ \hline 07092701g \\ \hline 69.24 \\ 0.42 \\ 14.71 \\ 1.55 \\ 0.08 \\ 0.37 \\ 1.15 \\ 4.37 \\ 4.51 \\ 0.03 \\ 3.15 \\ 99.58 \\ 11 \\ 776 \\ <5 \\ <4 \\ 6 \end{array}$	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32 4.26 4.43 0.04 3.24 99.80 11 747 n.d. n.d. 6	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.03 2.72 99.47 12 769 <5 4 4 4	$\begin{array}{c} 07090312 pg \\ 68.82 \\ 0.43 \\ 14.90 \\ 1.80 \\ 0.10 \\ 0.48 \\ 1.31 \\ 4.28 \\ 4.47 \\ 0.04 \\ 2.93 \\ 99.56 \\ 11 \\ 766 \\ <5 \\ <4 \\ 5 \\ \end{array}$	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 99.79 10 752 <5 <4 9	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 99.79 10 748 <5 5 5	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 3.19 99.59 10 755 n.d. 4 7
$\begin{tabular}{ c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.%) \\ \hline TiO_2 \\ Al_2O_3 \\ Fe_2O_3^* \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ L.O.I. \\ \hline Total \\ \hline As (ppm) \\ Ba \\ Co \\ Cr \\ Cu \\ Ga \\ \hline \end{tabular}$	$\begin{array}{c} {\rm Chuganji} \\ \hline 07092701g \\ \hline 69.24 \\ 0.42 \\ 14.71 \\ 1.55 \\ 0.08 \\ 0.37 \\ 1.15 \\ 4.37 \\ 4.51 \\ 0.03 \\ 3.15 \\ 99.58 \\ 11 \\ 776 \\ <5 \\ <4 \\ 6 \\ 17 \end{array}$	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32 4.26 4.43 0.04 3.24 99.80 11 747 n.d. n.d. 6 17	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.03 2.72 99.47 12 769 <5 4 4 18	$\begin{array}{c} 07090312 pg \\ 68.82 \\ 0.43 \\ 14.90 \\ 1.80 \\ 0.10 \\ 0.48 \\ 1.31 \\ 4.28 \\ 4.47 \\ 0.04 \\ 2.93 \\ 99.56 \\ 11 \\ 766 \\ <5 \\ <4 \\ 5 \\ 18 \\ \end{array}$	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 99.79 10 752 <5 <4 9 17	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 99.79 10 748 <5 5 5 5 5 17	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 3.19 99.59 10 755 n.d. 4 7 17
$\begin{tabular}{ c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.%) \\ \hline TiO_2 \\ Al_2O_3 \\ Fe_2O_3^* \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ L.O.I. \\ \hline Total \\ \hline As (ppm) \\ Ba \\ Co \\ Cr \\ Cu \\ Ga \\ Nb \\ \hline \end{tabular}$	$\begin{array}{c} {\rm Chuganji} \\ \hline 07092701g \\ \hline 69.24 \\ 0.42 \\ 14.71 \\ 1.55 \\ 0.08 \\ 0.37 \\ 1.15 \\ 4.37 \\ 4.51 \\ 0.03 \\ 3.15 \\ 99.58 \\ 11 \\ 776 \\ <5 \\ <4 \\ 6 \\ 17 \\ 14 \\ \end{array}$	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32 4.26 4.43 0.04 3.24 99.80 11 747 n.d. n.d. 6 17 13	$\begin{tabular}{ c c c c } \hline Fukui \\ \hline 07090312bg \\ \hline 69.27 \\ \hline 0.42 \\ \hline 14.70 \\ \hline 1.69 \\ \hline 0.10 \\ \hline 0.42 \\ \hline 1.20 \\ \hline 4.40 \\ \hline 4.52 \\ \hline 0.03 \\ 2.72 \\ \hline 99.47 \\ \hline 12 \\ \hline 769 \\ < 5 \\ \hline 4 \\ \hline 4 \\ 18 \\ \hline 14 \\ \hline 14 \end{tabular}$	$\begin{array}{c} \hline 07090312pg\\ 68.82\\ 0.43\\ 14.90\\ 1.80\\ 0.10\\ 0.48\\ 1.31\\ 4.28\\ 4.47\\ 0.04\\ 2.93\\ 99.56\\ 11\\ 766\\ <5\\ <4\\ 5\\ 18\\ 18\\ 14\\ \end{array}$	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 99.79 10 752 <5 <4 9 17 14	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 99.79 10 748 <5 5 5 5 5 17 13	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 3.19 99.59 10 755 n.d. 4 7 17 13
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total As (ppm) Ba Co Cr Cu Ga Nb Ni	$\begin{array}{c} {\rm Chuganji} \\ \hline 07092701g \\ \hline 69.24 \\ 0.42 \\ 14.71 \\ 1.55 \\ 0.08 \\ 0.37 \\ 1.15 \\ 4.37 \\ 4.51 \\ 0.03 \\ 3.15 \\ 99.58 \\ 11 \\ 776 \\ <5 \\ <4 \\ 6 \\ 17 \\ 14 \\ 5 \\ \end{array}$	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32 4.26 4.43 0.04 3.24 99.80 11 747 n.d. n.d. 6 17 13 6	$\begin{tabular}{ c c c c } \hline Fukui \\ \hline 07090312bg \\ \hline 69.27 \\ \hline 0.42 \\ \hline 14.70 \\ \hline 1.69 \\ \hline 0.10 \\ \hline 0.42 \\ \hline 1.20 \\ \hline 4.40 \\ \hline 4.52 \\ \hline 0.03 \\ 2.72 \\ \hline 99.47 \\ \hline 12 \\ \hline 769 \\ < 5 \\ \hline 4 \\ \hline 4 \\ 18 \\ \hline 14 \\ 5 \\ \hline 5 \end{tabular}$	$\begin{array}{c} \hline 07090312pg\\ 68.82\\ 0.43\\ 14.90\\ 1.80\\ 0.10\\ 0.48\\ 1.31\\ 4.28\\ 4.47\\ 0.04\\ 2.93\\ 99.56\\ 11\\ 766\\ <5\\ <4\\ 5\\ 18\\ 14\\ 7\\ \end{array}$	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 99.79 10 752 <5 <4 9 17 14 6	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 99.79 10 748 <5 5 5 5 5 17 13 9	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 3.19 99.59 10 755 n.d. 4 7 17 13 7
$\begin{tabular}{ c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.%) \\ \hline TiO_2 \\ Al_2O_3 \\ Fe_2O_3 \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ L.O.L \\ \hline Total \\ \hline As (ppm) \\ Ba \\ Co \\ Cr \\ Cu \\ Ga \\ Nb \\ Ni \\ Pb \\ \end{tabular}$	$\begin{array}{c} {\rm Chuganji} \\ \hline 07092701g \\ \hline 69.24 \\ 0.42 \\ 14.71 \\ 1.55 \\ 0.08 \\ 0.37 \\ 1.15 \\ 4.37 \\ 4.51 \\ 0.03 \\ 3.15 \\ 99.58 \\ \hline 11 \\ 776 \\ <5 \\ <4 \\ 6 \\ 17 \\ 14 \\ 5 \\ 17 \\ \end{array}$	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32 4.26 4.43 0.04 3.24 99.80 11 747 n.d. n.d. 6 17 13 6 17	Fukui $07090312bg$ 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.03 2.72 99.47 12 769 < 5 4 18 14 5 20	$\begin{array}{c} \hline 07090312pg\\ \hline 68.82\\ 0.43\\ 14.90\\ 1.80\\ 0.10\\ 0.48\\ 1.31\\ 4.28\\ 4.47\\ 0.04\\ 2.93\\ 99.56\\ \hline 11\\ 766\\ <5\\ <4\\ 5\\ 18\\ 14\\ 7\\ 13\\ \end{array}$	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 99.79 10 752 <5 <4 9 17 14 6 18	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 99.79 10 748 <5 5 5 5 5 17 13 9 17	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 3.19 99.59 10 755 n.d. 4 7 17 13 7 17
$\begin{tabular}{ c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.%) \\ TiO_2 \\ Al_2O_3 \\ Fe_2O_3 \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ L.O.L \\ \hline Total \\ \hline As (ppm) \\ Ba \\ Co \\ Cr \\ Cu \\ Ga \\ Nb \\ Ni \\ Pb \\ Rb \\ \hline \end{tabular}$	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15 4.37 4.51 0.03 3.15 99.58 11 776 <5 <4 6 17 14 5 17 153	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32 4.26 4.43 0.04 3.24 99.80 11 747 n.d. n.d. 6 17 13 6 17 13 6 17 153	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.03 2.72 99.47 12 769 <5 4 4 18 14 5 20 152	$\begin{array}{r} \hline 07090312pg\\ \hline 68.82\\ 0.43\\ 14.90\\ 1.80\\ 0.10\\ 0.48\\ 1.31\\ 4.28\\ 4.47\\ 0.04\\ 2.93\\ 99.56\\ \hline 11\\ 766\\ <5\\ <4\\ 5\\ 18\\ 14\\ 7\\ 13\\ 151\\ \hline \end{array}$	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 99.79 10 752 <5 <4 9 17 14 6 18 147	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 99.79 10 748 <5 5 5 5 5 17 13 9 17 13 9 17 147	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 3.19 99.59 10 755 n.d. 4 7 17 13 7 17 146
$\begin{tabular}{ c c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.%) \\ TiO_2 \\ Al_2O_3 \\ Fe_2O_3 \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ L.O.I. \\ \hline Total \\ \hline As (ppm) \\ Ba \\ Co \\ Cr \\ Cu \\ Ga \\ Nb \\ Ni \\ Pb \\ Rb \\ S \end{tabular}$	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15 4.37 4.51 0.03 3.15 99.58 11 776 <5 <4 6 17 14 5 17 153 148	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32 4.26 4.43 0.04 3.24 99.80 11 747 n.d. n.d. 6 17 13 6 17 153 233	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.03 2.72 99.47 12 769 <5 4 4 18 14 5 20 152 188	$\begin{array}{r} \hline 07090312pg\\ \hline 68.82\\ 0.43\\ 14.90\\ 1.80\\ 0.10\\ 0.48\\ 1.31\\ 4.28\\ 4.47\\ 0.04\\ 2.93\\ 99.56\\ \hline 11\\ 766\\ <5\\ <4\\ 5\\ 18\\ 14\\ 7\\ 13\\ 151\\ 192\\ \hline \end{array}$	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 99.79 10 752 <5 <4 9 17 14 6 18 147 237	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 99.79 10 748 <5 5 5 5 5 17 13 9 17 13 9 17 147 237	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 3.19 99.59 10 755 n.d. 4 7 17 13 7 17 146 211
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total As (ppm) Ba Co Cr Cu Ga Nb Ni Pb Rb S Sr	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15 4.37 4.51 0.03 3.15 99.58 11 776 <5 <4 6 17 14 5 17 153 148 177	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32 4.26 4.43 0.04 3.24 99.80 11 747 n.d. n.d. 6 17 13 6 17 153 233 209	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.03 2.72 99.47 12 769 <5 4 4 18 14 5 20 152 188 189	$\begin{array}{r} \hline 07090312pg\\ \hline 68.82\\ 0.43\\ 14.90\\ 1.80\\ 0.10\\ 0.48\\ 1.31\\ 4.28\\ 4.47\\ 0.04\\ 2.93\\ 99.56\\ \hline 11\\ 766\\ <5\\ <4\\ 5\\ 18\\ 14\\ 7\\ 13\\ 151\\ 192\\ 200\\ \hline \end{array}$	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 99.79 10 752 <5 <4 9 17 14 6 18 147 237 232	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 99.79 10 748 <5 5 5 5 5 17 13 9 17 13 9 17 147 237 232	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 3.19 99.59 10 755 n.d. 4 7 17 13 7 17 146 211 242
$\begin{tabular}{ c c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.%) \\ TiO_2 \\ Al_2O_3 \\ Fe_2O_3 \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ L.O.I. \\ \hline Total \\ \hline As (ppm) \\ Ba \\ Co \\ Cr \\ Cu \\ Ga \\ Nb \\ Ni \\ Pb \\ Rb \\ S \\ Sr \\ Th \\ \end{tabular}$	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15 4.37 4.51 0.03 3.15 99.58 11 776 <5 <4 6 17 14 5 17 153 148 177 17	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32 4.26 4.43 0.04 3.24 99.80 11 747 n.d. n.d. 6 17 13 6 17 153 233 209 17	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.03 2.72 99.47 12 769 <5 4 4 18 14 5 20 152 188 189 17	$\begin{array}{c} \hline 07090312pg\\ \hline 68.82\\ 0.43\\ 14.90\\ 1.80\\ 0.10\\ 0.48\\ 1.31\\ 4.28\\ 4.47\\ 0.04\\ 2.93\\ 99.56\\ \hline 11\\ 766\\ <5\\ <4\\ 5\\ 18\\ 14\\ 7\\ 13\\ 151\\ 192\\ 200\\ 18\\ \hline \end{array}$	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 99.79 10 752 <5 <4 9 17 14 6 18 147 237 232 17	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 99.79 10 748 <5 5 5 5 5 5 17 13 9 17 13 9 17 147 237 232 16	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 3.19 99.59 10 755 n.d. 4 7 17 13 7 17 146 211 242 16
$\begin{tabular}{ c c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.%) \\ TiO_2 \\ Al_2O_3 \\ Fe_2O_3 \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ L.O.L \\ \hline Total \\ \hline As (ppm) \\ Ba \\ Co \\ Cr \\ Cu \\ Ga \\ Nb \\ Ni \\ Pb \\ Rb \\ S \\ Sr \\ Th \\ V \\ \end{tabular}$	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15 4.37 4.51 0.03 3.15 99.58 11 776 <5 <4 6 17 14 5 17 153 148 177 17 15	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32 4.26 4.43 0.04 3.24 99.80 11 747 n.d. n.d. 6 17 13 6 17 153 233 209 17 19	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.03 2.72 99.47 12 769 <5 4 4 18 14 5 20 152 188 189 17 17	$\begin{array}{r} \hline 07090312pg \\ \hline 68.82 \\ 0.43 \\ 14.90 \\ 1.80 \\ 0.10 \\ 0.48 \\ 1.31 \\ 4.28 \\ 4.47 \\ 0.04 \\ 2.93 \\ 99.56 \\ \hline 11 \\ 766 \\ <5 \\ <4 \\ 5 \\ 18 \\ 14 \\ 7 \\ 13 \\ 151 \\ 192 \\ 200 \\ 18 \\ 22 \\ \end{array}$	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 99.79 10 752 <5 <4 9 17 14 6 18 147 237 232 17 25	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 99.79 10 748 <5 5 5 5 5 5 17 13 9 17 13 9 17 147 237 232 16 25	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 3.19 99.59 10 755 n.d. 4 7 17 13 7 17 146 211 242 16 26
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total As (ppm) Ba Co Cr Cu Ga Nb Ni Pb Rb S Sr Th V Y	Chuganji 07092701g 69.24 0.42 14.71 1.55 0.08 0.37 1.15 4.37 4.51 0.03 3.15 99.58 11 776 <5 <4 6 17 14 5 17 153 148 177 17 15 36	07092714g 68.70 0.44 14.90 1.88 0.10 0.49 1.32 4.26 4.43 0.04 3.24 99.80 11 747 n.d. n.d. 6 17 13 6 17 153 233 209 17 19 35	Fukui 07090312bg 69.27 0.42 14.70 1.69 0.10 0.42 1.20 4.40 4.52 0.03 2.72 99.47 12 769 <5	$\begin{array}{c} \hline 07090312pg \\ \hline 68.82 \\ 0.43 \\ 14.90 \\ 1.80 \\ 0.10 \\ 0.48 \\ 1.31 \\ 4.28 \\ 4.47 \\ 0.04 \\ 2.93 \\ 99.56 \\ \hline 11 \\ 766 \\ <5 \\ <4 \\ 5 \\ 18 \\ 14 \\ 7 \\ 13 \\ 151 \\ 192 \\ 200 \\ 18 \\ 22 \\ 37 \\ \hline \end{array}$	Jikumaru 09082301g 67.64 0.49 15.55 2.23 0.10 0.57 1.58 4.13 4.31 0.07 3.12 99.79 10 752 <5 <4 9 17 14 6 18 147 237 232 17 25 36	Funagawa 09082303Ag 68.35 0.46 15.46 1.50 0.10 0.51 1.57 4.07 4.36 0.07 3.34 99.79 10 748 <5 5 5 5 5 17 13 9 17 13 9 17 147 237 232 16 25 36	09082303Bg 68.27 0.45 15.21 1.69 0.10 0.57 1.64 4.14 4.26 0.07 3.19 99.59 10 755 n.d. 4 7 17 13 7 17 146 211 242 16 26 34

Table 1. Chemical compositions of volcanic glass from the Aso-4 pyroclastic flow deposits.

*: total iron as Fe_2O_3 , L.O.I.: loss on ignition, n.d.: not detected, p: pumice type, b: bubble type, g: glass.

Zr

Location	Antoku	Chuganji			
Sample No.	07092202pm	07090301pma	07090301pmb	07092701pm	07092714pm
SiO_2 (wt.%)	64.97	65.58	67.68	65.62	65.65
TiO_2	0.58	0.58	0.47	0.53	0.56
Al_2O_3	16.48	15.79	15.35	16.74	16.07
Fe ₂ O ₃ *	2.89	2.84	2.06	2.40	2.76
MnO	0.12	0.13	0.10	0.11	0.12
MgO	0.77	0.78	0.49	0.53	0.71
CoO	210	215	1.50	1.42	1.07
VaO N- O	2.10	2.15	1.50	1.45	1.97
Na ₂ O	5.95	4.24	4.14	4.12	4.02
K ₂ O	3.84	3.88	4.38	3.88	3.94
P_2O_5	0.08	0.11	0.05	0.05	0.05
L.O.I.	3.81	3.13	3.15	4.36	3.78
Total	99.59	99.21	99.37	99.77	99.63
As (ppm)	9	9	11	11	10
Ba	708	697	747	827	686
Cr	<4	<4	4	n.d.	<4
Cu	<4	<4	<4	<4	<4
Ga	18	18	17	18	18
Nb	14	13	14	15	14
Ni	<4	<4	5	<4	<4
Dh	16	15	12	16	15
FD	10	107	140	10	10
Rb	130	127	142	132	131
S	250	269	80	279	227
Sr	338	346	246	237	325
Th	15	14	16	19	16
V	32	35	21	25	29
Υ	34	34	35	40	35
Zn	55	58	46	57	51
Zr	262	247	283	315	263
Location	Fukui	Iikumaru	Funagawa		
Location Sample No	Fukui 07090312pm	Jikumaru 09082301pm	Funagawa 09082303 Apm	09082303Bpm	
Location Sample No.	Fukui 07090312pm 66.61	Jikumaru 09082301pm 67.12	Funagawa 09082303Apm 65.72	09082303Bpm	
Location Sample No. SiO ₂ (wt.%)	Fukui 07090312pm 66.61 0.51	Jikumaru 09082301pm 67.12 0.48	Funagawa 09082303Apm 65.72 0.55	09082303Bpm 65.98 0.54	
Location Sample No. SiO ₂ (wt.%) TiO ₂	Fukui 07090312pm 66.61 0.51 15.52	Jikumaru 09082301pm 67.12 0.48	Funagawa 09082303Apm 65.72 0.55 15.70	09082303Bpm 65.98 0.54 15.65	
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃	Fukui 07090312pm 66.61 0.51 15.52	Jikumaru 09082301pm 67.12 0.48 15.60	Funagawa 09082303Apm 65.72 0.55 15.70 2.79	09082303Bpm 65.98 0.54 15.65	
$\begin{tabular}{ c c c c } \hline Location \\\hline Sample No. \\\hline SiO_2 (wt.\%) \\\hline TiO_2 \\Al_2O_3 \\Fe_2O_3^* \\E C \\C \\$	Fukui 07090312pm 66.61 0.51 15.52 2.37	Jikumaru 09082301pm 67.12 0.48 15.60 2.15	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12	09082303Bpm 65.98 0.54 15.65 2.68	
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12	09082303Bpm 65.98 0.54 15.65 2.68 0.12	
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78	
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15	
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07	
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93	
$\begin{tabular}{ c c c c } \hline Location \\\hline Sample No. \\\hline SiO_2 (wt.\%) \\\hline TiO_2 \\Al_2O_3 \\Fe_2O_3 \\\hline MnO \\MgO \\CaO \\NagO \\CaO \\Na_2O \\K_2O \\P_2O_5 \end{tabular}$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10	
$\begin{tabular}{ c c c c } \hline Location \\\hline Sample No. \\\hline SiO_2 (wt.\%) \\\hline TiO_2 \\Al_2O_3 \\Fe_2O_3 \\Fe_2O_3 \\MnO \\MgO \\CaO \\NagO \\CaO \\Na_2O \\K_2O \\P_2O_5 \\L.O.I. \\\end{tabular}$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37	
$\begin{tabular}{ c c c c } \hline Location \\\hline Sample No. \\\hline SiO_2 (wt.\%) \\\hline TiO_2 \\Al_2O_3 \\Fe_2O_3 \\Fe_2O_3 \\MnO \\MgO \\CaO \\NagO \\CaO \\Na_2O \\K_2O \\P_2O_5 \\L.O.I. \\Total \end{tabular}$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37	
$\begin{tabular}{ c c c c } \hline Location \\\hline Sample No. \\\hline SiO_2 (wt.\%) \\\hline TiO_2 \\Al_2O_3 \\Fe_2O_3^* \\MnO \\MgO \\CaO \\NagO \\CaO \\Na_2O \\K_2O \\P_2O_5 \\L.O.I. \\\hline Total \\\hline As(ppm) \\\hline \end{tabular}$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37 9	
$\begin{tabular}{ c c c c } \hline Location \\\hline Sample No. \\\hline SiO_2 (wt.\%) \\TiO_2 \\Al_2O_3 \\Fe_2O_3 \\Fe_2O_3 \\MnO \\MgO \\CaO \\Na_2O \\K_2O \\P_2O_5 \\L.O.I. \\Total \\\hline As(ppm) \\Ba \end{tabular}$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9 701	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37 9 707	
$\begin{tabular}{ c c c c } \hline Location \\\hline Sample No. \\\hline SiO_2 (wt.\%) \\TiO_2 \\Al_2O_3 \\Fe_2O_3 \\Fe_2O_3 \\MnO \\MgO \\CaO \\Na_2O \\K_2O \\P_2O_5 \\L.O.I. \\\hline Total \\As(ppm) \\Ba \\Cr \\\end{tabular}$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722 ≤4	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758 ≤4	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9 701 p d	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37 9 707 ≤4	
$\begin{tabular}{ c c c c } \hline Location \\\hline Sample No. \\\hline SiO_2 (wt.\%) \\TiO_2 \\Al_2O_3 \\Fe_2O_3 \\Fe_2O_3 \\MnO \\MgO \\CaO \\Na_2O \\K_2O \\P_2O_5 \\L.O.I. \\Total \\\hline As(ppm) \\Ba \\Cr \\Cu$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722 <4 p.d	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758 <4	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.12 4.01 0.10 3.25 99.27 9 701 0.1 9	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37 9 707 <4 <4	
$\begin{tabular}{ c c c c } \hline Location \\\hline Sample No. \\\hline SiO_2 (wt.\%) \\\hline TiO_2 \\Al_2O_3 \\\hline Fe_2O_3 \\\hline MnO \\MgO \\CaO \\Na_2O \\K_2O \\P_2O_5 \\L.O.I. \\\hline Total \\\hline As(ppm) \\Ba \\Cr \\Cu \\Cr \\Cu \\Cr \\Cu \\Cr \\Cu \\Cr \\Cn \\Cr \\Cn \\Cr \\Cn \\Cn \\Cr \\Cn \\Cr \\Cn \\Cr \\Cn \\Cn \\Cn \\Cn \\Cn \\Cn \\Cn \\Cn \\Cn \\Cn$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722 <4 n.d. 17	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758 <4 <4 <4 18	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9 9.27 9 701 n.d. <4	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37 9 707 <4 <4 18	
$\begin{tabular}{ c c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.\%) \\ \hline TiO_2 \\ Al_2O_3 \\ Fe_2O_3^* \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ L.O.I. \\ \hline Total \\ \hline As(ppm) \\ Ba \\ Cr \\ Cu \\ Ga \\ Nu \\ \hline Nu \\ \hline \end{tabular}$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722 <4 n.d. 17 14	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758 <4 <4 <4 18 12	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9 701 n.d. <4 18	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37 9 707 <4 <4 18 12 2 12 12 12 12 12 12 12 12	
$\begin{tabular}{ c c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.\%) \\ \hline TiO_2 \\ Al_2O_3 \\ Fe_2O_3^* \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ L.O.I. \\ \hline Total \\ \hline As(ppm) \\ Ba \\ Cr \\ Cu \\ Ga \\ Nb \\ Ni \\ \hline \end{tabular}$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722 <4 n.d. 17 14 4	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758 <4 <4 <4 18 13	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9 701 n.d. <4 18 13	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37 9 707 <4 <4 18 13 14	
$\begin{tabular}{ c c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.\%) \\ \hline TiO_2 \\ Al_2O_3 \\ Fe_2O_3^* \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ L.O.I. \\ \hline Total \\ \hline As(ppm) \\ Ba \\ Cr \\ Cu \\ Ga \\ Nb \\ Ni \\ \hline \\ \end{tabular}$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722 <4 n.d. 17 14 4 4	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758 <4 <4 18 13 4 15 15 10 10 10 10 10 10 10 10 10 10	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9 701 n.d. <4 18 13 <4	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37 9 707 <4 <4 18 13 <4 15 15 10 10 10 10 10 10 10 10 10 10	
$\begin{tabular}{ c c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.\%) \\ TiO_2 \\ Al_2O_3 \\ Fe_2O_3^* \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ L.O.I. \\ \hline Total \\ \hline As(ppm) \\ Ba \\ Cr \\ Cu \\ Ga \\ Nb \\ Ni \\ Pb \end{tabular}$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722 <4 n.d. 17 14 4 13	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758 <4 <4 <4 18 13 4 10	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9 701 n.d. <4 18 13 <4 11	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37 9 707 <4 <4 18 13 <4 11	
$\begin{tabular}{ c c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.\%) \\ TiO_2 \\ Al_2O_3 \\ Fe_2O_3^* \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ L.O.I. \\ \hline Total \\ \hline As(ppm) \\ Ba \\ Cr \\ Cu \\ Ga \\ Nb \\ Ni \\ Pb \\ Rb \\ \hline \end{tabular}$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722 <4 n.d. 17 14 4 13 134	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758 <4 4 4 10 13 4 10 141	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9 701 n.d. <4 18 13 <4 11 130	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37 9 707 <4	
$\begin{tabular}{ c c c c } \hline Location \\\hline Sample No. \\\hline SiO_2 (wt.\%) \\\hline TiO_2 \\Al_2O_3 \\\hline Fe_2O_3 \\\hline MnO \\\hline MgO \\CaO \\\hline Na_2O \\\hline K_2O \\\hline P_2O_5 \\\hline L.O.I. \\\hline Total \\\hline As(ppm) \\\hline Ba \\Cr \\Cu \\Ga \\Nb \\Ni \\Pb \\Rb \\S \\\end{tabular}$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722 <4 n.d. 17 14 4 13 134 802	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758 <4 <4 18 13 4 10 141 82	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9 701 n.d. <4 18 13 <4 11 130 176	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37 9 707 <4	
$\begin{tabular}{ c c c c } \hline Location \\\hline Sample No. \\\hline SiO_2 (wt.\%) \\\hline TiO_2 \\Al_2O_3 \\\hline Fe_2O_3 \\\hline MnO \\\hline MgO \\CaO \\\hline Na_2O \\\hline K_2O \\\hline P_2O_5 \\\hline L.O.I. \\\hline Total \\\hline As(ppm) \\\hline Ba \\Cr \\Cu \\Ga \\Nb \\Ni \\Pb \\Rb \\S \\Sr \\\hline \end{tabular}$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722 <4 n.d. 17 14 4 13 134 802 279	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758 <4 <4 18 13 4 10 141 82 263	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9 701 n.d. <4 18 13 <4 11 130 176 334	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37 9 707 <4	
$\begin{tabular}{ c c c c } \hline Location \\\hline Sample No. \\\hline SiO_2 (wt.\%) \\\hline TiO_2 \\Al_2O_3 \\\hline Fe_2O_3 \\\hline MnO \\\hline MgO \\CaO \\\hline Na_2O \\\hline K_2O \\\hline P_2O_5 \\\hline L.O.I. \\\hline Total \\\hline As(ppm) \\\hline Ba \\Cr \\Cu \\Ga \\Nb \\Ni \\Pb \\Rb \\S \\Sr \\Th \end{tabular}$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722 <4 n.d. 17 14 4 13 134 802 279 16	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758 <4 <4 18 13 4 10 141 82 263 16	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9 701 n.d. <4 18 13 <4 11 130 176 334 15	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37 9 707 <4	
$\begin{tabular}{ c c c c } \hline Location \\\hline Sample No. \\\hline SiO_2 (wt.\%) \\\hline TiO_2 \\Al_2O_3 \\\hline Fe_2O_3 \\\hline MnO \\\hline MgO \\CaO \\\hline MgO \\CaO \\\hline Na_2O \\\hline K_2O \\\hline P_2O_5 \\\hline L.O.I. \\\hline Total \\\hline As(ppm) \\\hline Ba \\Cr \\Cu \\Ga \\Nb \\Ni \\Pb \\Rb \\S \\Sr \\Th \\V \\\end{tabular}$	Fukui $07090312pm$ 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722 <4 1.7 14 4 13 134 802 279 16	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758 <4 <4 <4 18 13 4 10 141 82 263 16 22	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9 701 n.d. <4 18 13 <4 11 130 176 334 15 29	$\begin{array}{r} 09082303 \text{Bpm} \\ 65.98 \\ 0.54 \\ 15.65 \\ 2.68 \\ 0.12 \\ 0.78 \\ 2.15 \\ 4.07 \\ 3.93 \\ 0.10 \\ 3.37 \\ 99.37 \\ 99.37 \\ 99.37 \\ 4 \\ 4 \\ 18 \\ 13 \\ 4 \\ 11 \\ 129 \\ 199 \\ 351 \\ 15 \\ 30 \\ \end{array}$	
$\begin{tabular}{ c c c c } \hline Location \\\hline Sample No. \\\hline SiO_2 (wt.\%) \\\hline TiO_2 \\Al_2O_3 \\\hline Fe_2O_3 \\\hline MnO \\\hline MgO \\CaO \\\hline MgO \\CaO \\\hline Na_2O \\\hline K_2O \\\hline P_2O_5 \\\hline L.O.I. \\\hline Total \\\hline As(ppm) \\\hline Ba \\Cr \\Cu \\Ga \\\hline Nb \\Ni \\Pb \\Rb \\S \\Sr \\Th \\V \\Y \\\end{tabular}$	Fukui $07090312pm$ 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722 <4 17 14 4 13 134 802 279 16 25 36	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758 <4 <4 18 13 4 10 141 82 263 16 22 38	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9 701 n.d. <4 18 13 <4 11 130 176 334 15 29 35	$\begin{array}{r} 09082303 \text{Bpm} \\ 65.98 \\ 0.54 \\ 15.65 \\ 2.68 \\ 0.12 \\ 0.78 \\ 2.15 \\ 4.07 \\ 3.93 \\ 0.10 \\ 3.37 \\ 99.37 \\ 99.37 \\ 99.37 \\ 99.37 \\ 4 \\ 4 \\ 11 \\ 129 \\ 13 \\ <4 \\ 11 \\ 129 \\ 199 \\ 351 \\ 15 \\ 30 \\ 34 \\ \end{array}$	
$\begin{tabular}{ c c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.\%) \\ \hline TiO_2 \\ Al_2O_3 \\ Fe_2O_3 \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ L.O.I. \\ \hline Total \\ \hline As(ppm) \\ Ba \\ Cr \\ Cu \\ Ga \\ Nb \\ Ni \\ Pb \\ Rb \\ S \\ Sr \\ Th \\ V \\ Y \\ 7n \\ \hline \end{tabular}$	Fukui 07090312pm 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722 <4 n.d. 17 14 4 13 134 802 279 16 25 36 58	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758 <4 <4 18 13 4 10 141 82 263 16 22 38 42	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9 701 n.d. <4 18 13 <4 11 130 176 334 15 29 35 51	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37 9 707 <4	
$\begin{tabular}{ c c c c } \hline Location \\ \hline Sample No. \\ \hline SiO_2 (wt.\%) \\ \hline TiO_2 \\ Al_2O_3 \\ Fe_2O_3^* \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ P_2O_5 \\ L.O.I. \\ \hline Total \\ \hline As(ppm) \\ Ba \\ Cr \\ Cu \\ Ga \\ Nb \\ Ni \\ Pb \\ Rb \\ S \\ Sr \\ Th \\ V \\ Y \\ Zn \\ 7r \\ \end{tabular}$	Fukui $07090312pm$ 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722 <4 $n.d.$ 17 14 4 13 134 802 279 16 25 36 58	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758 <4 <4 18 13 4 10 141 82 263 16 22 38 42 285	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9 701 n.d. <4 18 13 <4 11 130 176 334 15 29 35 51 250	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37 9 707 <4	
Location Sample No. SiO ₂ (wt.%) TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ L.O.I. Total As(ppm) Ba Cr Cu Ga Nb Ni Pb Rb S Sr Th V Y Zn Zr	Fukui $07090312pm$ 66.61 0.51 15.52 2.37 0.11 0.62 1.75 4.31 4.23 0.07 3.38 99.48 10 722 <4 $n.d.$ 17 14 4 13 134 802 279 16 25 36 58 278	Jikumaru 09082301pm 67.12 0.48 15.60 2.15 0.11 0.49 1.56 4.13 4.34 0.05 3.34 99.37 10 758 <4 <4 18 13 4 10 141 82 263 16 22 38 42 285	Funagawa 09082303Apm 65.72 0.55 15.70 2.78 0.12 0.80 2.12 4.12 4.01 0.10 3.25 99.27 9 701 n.d. <4 18 13 <4 11 130 176 334 15 29 35 51 20 15	09082303Bpm 65.98 0.54 15.65 2.68 0.12 0.78 2.15 4.07 3.93 0.10 3.37 99.37 9 707 <4	

Table 2. Chemical compositions of pumice from the Aso-4 pyroclastic flow deposits.

Fig. 5. SiO₂-oxides diagrams of the Aso-4 pyroclastic flow deposits.
Data sources: Ono et al. (1977), Watanabe (1979), Machida et al. (1985), Yagi and Soda (1989), Kimura et al. (1991), Kamata (1997), Hunter (1998), Tomita et al. (2008) and this study.
All data were recalculated on water free basis of the original analyses.

府地域の地質.地域地質研究報告(5万分の1地 質図幅).地質調査所,131p.

- Hunter, A. G., 1998, Intracrustal controls on the coexistence of tholeiitic and calc-alkaline magma series at Aso Volcano, SW Japan. *Jour. Petrol.*, 39, 1255-1284.
- 今井 功・寺岡易司・奥村公男・神戸信和・小野晃司, 1982,諸塚山地域の地質,地域地質研究報告(5 万分の1地質図幅).地質調査所,71p.
- 鎌田浩毅, 1997, 宮原地域の地質.地域地質研究報告(5万分の1地質図幅).地質調査所, 127p.
- 唐木田芳文・富田宰臣・下山正一・千々和一豊, 1994,福岡地域の地質.地域地質研究報告(5万 分の1地質図幅).地質調査所,192p.
- 久保和也・松浦浩久・尾崎正紀・牧本 博・星住英夫・ 鎌田耕太郎・広島俊男・中島和敏, 1993, 20万

分の1地質図 福岡. 地質調査所.

- 黒川勝己,2005,テフラ学入門-野外観察から地球環 境史の復元まで-.地学団体研究会,205p.
- 町田 洋・新井房夫,2003,新編 火山灰アトラス [日本列島とその周辺].東京大学出版会,336p.
- 町田 洋・新井房夫・百瀬 貢, 1985, 阿蘇4火山灰 - 分布の広域性と後期更新世示標層としての意義 -. 火山, 第2集, **30**, 49-70.
- 小野晃司・松本徰夫・宮久三千年・寺岡易司・神戸信 和, 1977, 竹田地域の地質.地域地質研究報告(5 万分の1地質図幅).地質調査所, 145p.
- 小野晃司・渡辺一徳, 1983, 阿蘇カルデラ. 月刊地球, 5 (2), 73-82.
- 酒井 彰・寺岡易司・宮崎一博・星住英夫・坂巻幸雄, 1993, 三重町地域の地質.地域地質研究報告(5 万分の1地質図幅).地質調査所,115p.

- 高本のぞみ・柚原雅樹・古川直道,2005,福岡県東部, 今川・祓川流域の元素濃度分布.福岡大学理学集 報,35 (2),41-66.
- 寺岡易司・宮崎一博・星住英夫・吉岡敏和・酒井 彰・ 小野晃司, 1992, 犬飼地域の地質. 地域地質研究 報告(5万分の1地質図幅). 地質調査所, 129p.
- 寺岡易司・奥村公男・村田明広・星住英夫, 1990, 佐 伯地域の地質.地域地質研究報告(5万分の1地 質図幅).地質調査所, 78p.
- 木村克己・巌谷敏光・三村弘二・佐藤喜男・佐藤岱生・ 鈴木祐一郎・坂巻幸雄, 1991, 尾鈴山地域の地質. 地域地質研究報告(5万分の1地質図幅). 地質 調査所, 137p.
- 白井正明・多田隆浩・藤岡換太郎, 1997, ODP 日本 海試料との対比に基づく男鹿半島安田海岸更新世 中 – 後期テフラの同定と年代. 第四紀研究, 36, 183-196.
- 富田宰臣・下山正一・松浦浩久・宮崎一博・石橋 毅・ 三木 孝,2008,大牟田地域の地質.地域地質研 究報告(5万分の1地質図幅).産総研地質調査 綜合センター,69p.

- Watanabe, K., 1978, Studies on the Aso pyroclastic flow deposits in the region to the west of Aso caldera, Southwest Japan, I: geology. *Mem. Fac. Educ. Kumamoto Univ.*, no. 27, 97-120.
- Watanabe, K., 1979, Studies on the Aso pyroclastic flow deposits in the region to the west of Aso caldera, Southwest Japan, II: petrology of the Aso-4 pyroclastic flow deposits. *Mem. Fac. Educ. Kumamoto Univ.*, no. 28, 75-112.
- 渡辺一徳,1986,阿蘇カルデラ起源,鳥栖オレンジ軽 石流の流動・堆積機構.文部省科学研究費自然災 害特別研究,研究計画「火山噴火に伴う乾燥粉体 流(火砕流等)の特性と災害」報告書,115-128.
- 八木浩司・早田 勉, 1989, 宮城県中部および北部に 分布する後期更新世広域テフラとその層位. 地学 雑誌, 98, 39-53.
- 吉岡敏和・星住英夫・宮崎一博, 1997, 大分地域の地質. 地域地質研究報告(5万分の1地質図幅). 地質 調査所, 65p.
- 柚原雅樹・古川直道・田口幸洋,2004,粉末ペレット 法による珪酸塩・炭酸塩岩石の微量元素の蛍光X

線分析. 福岡大学理学集報, 34 (1), 43-49.

袖原雅樹・田口幸洋,2003a, 蛍光X線分析装置 ZSX100eによる珪酸塩岩石の主成分および微量 元素の定量分析. 福岡大学理学集報,33 (1), 25-34.

柚原雅樹・田口幸洋, 2003b, ガラスビード法による

珪酸塩岩石のCoおよびSの蛍光X線分析. 福岡 大学理学集報, **33**(2), 77-81.

柚原雅樹・田口幸洋,2006,ガラスビード法による 炭酸塩岩石の主成分および微量元素の蛍光X線分 析. 福岡大学理学集報,36 (2),29-35.

These maps are adapted from the 1/25000 topographic maps "Funyudo"(A), "Chikuzenyamada" (B) and "Daigyoji"(C) published by the Geographical Survey Institute of Japan.

Appendix2. Location of sampling points. This map is adapted from the 1/25000 topographic map "Taketa" published by the Geographical Survey Institute of Japan.