W KEMEIER 34 (1) 1~16 (2004) o

Distortion and Characterization Theorems for
Generalized Fractional Integration Operators Involving H-Function

in Subclasses of Univalent Functions
Virginia S. Kiryakova*, Megumi Saigo! and Shigeyoshi Owa?

*Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia 1090, Bulgaria
tDepartment of Applied Mathematics, Fukuoka University, Fukuoka 814-0180, Japan
iDepartment of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan

(Received November 30, 2003)

1. Introduction

Let A(n) denote the class of functions of the form

[e.e]
f)=2z+ Z apz* (neN={1,2,3,...}) (1)
k=n+1
which are analytic in the unit disk U = {z : |2] < 1}, and let S(n) denote the subclass of A(n) of
unsvalent functions in U. The so-called subclass of functions with negative coefficients is also often
considered, denoted by T'(n) C S(n), of the functions of the form

o0

f@)=z2= 3 @ (@20 k=n+ln+2..) @)

We consider some mapping, distortion and characterization properties of the operators of the gen-
eralized fractional calculus involving Fox’s H-functions (Kiryakova [8]) in the classes A(n), S(n), T (n)
and their subclasses of the so-called starlike and convez functions of order o (0 £ a < 1).

In this way we extend our previous results (see Kiryakova, Saigo and Owa [10]) related to the
operators of generalized fractional calculus involving Meijer’s G-functions, and including the hyper-
geometric fractional integration operators by Saigo ([21]-[23], [31]) and Hohlov ([3], [4]), the Appell’s
Fs-function operators by Saigo ([24], [25]) and most of the classical integral operators considered in
classes of univalent functions by various authors.

2. Preliminaries

We remind first the definitions of some special functions referred to in this paper.
By a Foz’s H-function we mean a generalized hypergeometric function defined by means of the
Mellin—Barnes type contour integral

m,n
Hyg [‘7

m n
(ak, ARt 1 kl;l1 P~ SBk)jI;I1 L(1-aj+s4))
p o® ds, (3)

q
b, B! | 2"y [T T(aj—s4;) 11 T(1— b+ sBy)

j=n+ k=m+1

[u



where £ is a suitable contour in C, the orders (m,n,p,q) are integers 0 S m < ¢, 0 S n < p and
the parameters a;j € R, 4; > 0 (j = 1,...,p), bp € R, By > 0 (k 1,...,q) are such that
Aj(bg +1) # Bg(a; — V' = 1) (I, =0,1,2,...). For various type of contours and conditions for
existence and analyticity of function (3) in disks C C whose radii are p = ngl A;Aj Im_, BE’“ >0
of the H-functions, one can see in [5], [8, App.], [15], [28], etc.

When A; =...=Ap, =By =...= B, =1, (3) turns into the more popular Meijer’s G-function
(see [2, Vol.1, Ch.5], [5], [8], [15]). The G- and H-functions encompass almost all the elementary and
special functions and this makes the knowledge on them very useful. Observe that the generalized

I

hypergeometric functions ,Fy, and thus, most of the classical special functions, are special cases of
the G-function:

Q

kl:IF(bk) l—ay,...,1—ap
pFelar, ... apib1, ... bg;0) = = qu+1 -0 . (4)

[1 T'(a)) 0,1 —b1,...,1 =104

i=1

On the other side, the Mittag-Leffler functions E,,, (appearing as solutions of fractional order dif-
ferential and integral equations) and the Wright’s generalized hypergeometric functions ,¥, with
irrational Aj, By > 0, give examples of H-functions, not reducible to G-functions:

o (a1, A1), - -, (ap, Ap) o - i (a1 + kA1) .. .D(ap + kAp) o*
(b1, B1), - -, (bg, By) par [(by1 +kB1)...I'(bg + kB,) k!

Lp (1—a17A1)7"'7(1_aP1A,’D)
=Hpg41 |—0 (5)
(0,1),(1 — b1, B1),...,(1 —bg, By)
However, for Aj =...=A,=B1=...=B; =1,
p
(a1,1),...,(ap, 1) jl;llr(aj)
jo | = ——— pFylar,...,ap;b1, ..., bg;0). (6)
(b171)7‘-.)(b(171) kH F(bk)
=1

In the scheme of the typical H-functions we have recently included and studied also multi-index
analogues of E, ,, called multiindex Mittag-Leffler functions (see Kiryakova [9]).

Using as kernel-function a Meijer’s G-function, and more generally - a Fox’s H-function of pe-
culiar order (m,0,m, m), a generalized fractional calculus has been developed in Kiryakova [8] that
includes as special cases almost all the known operators of fractional integration and differentiation
studied by many authors. Especially, even the particular case with a G-function kernel, has been
shown (Kiryakova [8, Ch.5], Kiryakova, Saigo and Owa [10], Kiryakova, Saigo and Srivastava [11]) to
encompass most of the integro-differential operators already popular in univalent functions theory.

Let m = 1 be an integer and §; = 0,v; € R, 3, >0 (i =1,...,m). We consider § = (81, .- .,0m)
as a multiorder of fractional integration, resp., v = (y1,...,Ym) as multiweight, 8 = (81,...,Bm) as
additional parameter. The integral operators defined as follows:

1 i+ 0 +1—-1/6:,1/8)7
. /Hg,’gl [U (v /Bis 1/Bi)T feo)do, it Z(S >0,
Iigym ) =19 3 (vi+1-1/B,1/B8)7 (7)
f(z), if hh=6h=...=6p,=0,
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are said to be multiple (m-tuple) Erdélyi-Kober fractional integration operators and more generally,
all the operators of the form

If(z) = 22130 £(z) with 6 20

are called briefly generalized (m-tuple) fractional integrals.

The corresponding generalized fractional derivatives are denoted by Dggz;:fg’) and defined by means
of explicit differintegral expressions (see [8]), similarly to the idea for the classical Riemann-Liouville
derivative. For m = 1, operators (7) turn into the Erdélyi-Kober fractional integrals I 7’5, widely used
in the applied mathematical analysis (see [8], [26]) and to the classical Riemann-Liowville fractional

integrals RY:

1 )61
35 = [ S5 o7 zedo (6> 04 €R,8>0), (®)

0
Rof(z)=2° /(1 f(za)da—z‘SIO‘sf(z) (6 > 0), (9)

namely:
ROf(2) = 2100 f(2), I}°f(2) = I}P £ (2)

for m = 2 - into the hypergeometric fractional integrals (Love, Saigo, Hohlov, etc.), and for various
other special choices of m 2 1 and of parameters, to many other generalized integration and differ-
entiation operators, used in analysis, including in univalent functions theory, integral transforms and
special functions, differential and integral equations, etc.

The main feature of the generalized (m-tuple) fractional integrals is that single integrals (7)
involving H-functions (or G-functions in the simpler case of equal §; = 8 > 0,i = 1,...,m) can be
equivalently represented by means of commutative compositions of finite number m of Erdélyi—Kober
integrals (8), namely: in the case considered here, forv; 2 —1,6; 20,3, >0 (i =1,...,m),

1
I(g: ,,g)f( )= IZHI%’ ’] f(z)= / /l: a _0)51) o) } f(zo}/ﬁ1 ...U;,{'B'") doy...dop. (10)

0

If some of the §; are zeros: §; =...=6; =0,1 < s < m, the corresponding multipliers are identity
operators (Ig:‘s’ = I) and the multiplicity of (7), (10) reduces from m to m — s (the same for the
order of the kernel H-functions). Decomposition (10) is the key to numerous applications of (7),
arising from the simple but quite effective tools of the G- and H-functions.

A detailed theory, called generalized fractional calculus, and an analogue of the classical fractional
calculus and its different applications are proposed in [8]. Here we consider some mapping properties
of operators (7) in classes of analytic functions in the unit disk U = {z : |2| < 1}.

Using only the simple properties of Fox’s H-function ([8, App.], [15], [28]), one easily obtains the
following.



Lemma 0. Ford; 20,v€R,3 >0 (i=1,...,m), and each p > r<nax [—Bi(vi + 1)],

_1_m

m
(% Py — - _ L(vi+ 14 p/B:)
Tgom &y =2 with 3y =] T(v+ 0 + 1+ p/B)

> 0. (11)

Then the conditions
61207 ’Yig_la /32>0 (Z=17>m) (12)

ensure that (11) holds for each p 2 0.

Proof. To evaluate the I ((g’; (00) 4 -image of an arbitrary power function f(z) = 2P, we use an extension
of known integral formulas for the H-functions, namely formula [8, App., (E.21)]:

1
/ H Tm“,(; {0

0

(ai7 Cl)’in

ﬁ b + Cz
(bi, C)T

T2 + C) for a;>b;>-C; (i=1,...,m).

Then, according to the well known H-function’s property (see [8, App., (E.9)]), we obtain

I(’h (5){ P} = /Hmo [

—zp/H’"O [

Clyi+1+p/6)
pH \T(vi + 6; + 1+ p/By) =X,

(vi+ 6 +1—1/8;,1/8:)7

(vi+1-1/8:,1/8:)7

(vi+ 8+ 1+ (p—1)/B)T ] "
(vi+14+(-1)/8)7

:| ZPoP do

where the conditions v; + 6; + p/8; > v +p/Bi > =1 (i = 1,...,m) are ensured by § = 0 and
% >-=1-p/B; (i=1,...,m), le. p> max[—0Bi(y + 1)]. To have (11) for all 2P (p = 0) it suffices
1

to ask 1; = — 1. ]

In view of formula (11), for considering functions in the classes A(n), S(n), T'(n), it is suitable to
normalize the operators (7) by the multiplier constant [A\;]~! (p = 1). Therefore, further we consider
the generalized fractional integrals (using the same name for the normalized version, but stressing
this fact by an additional “tilde” in the denotation: j}%) B = 0] 1I ().(6:)

Bi)m

; Plvi+6+1+1/6) 7006
j}’gl)(d)f( )= ,Ill D(vi+1+1/8) (g’))'(’f)f( ) (13)

Thus, from Lemma 0 and the more general results in [8, Ch.5, §5.5], [12, Th.1], we can easily
obtain the following:

Theorem 1. Under the parameters’ conditions (12) :

61'207 'Yig_]-) ﬁi>0 (i=1’---am)
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T('Yi)a(Ji)

the generalized fractional integral (85)m  maps the class A(n) into itself, and the image of a power
series (1) has the form

o0 [ee]
If(z) =T37% {z + 3 akzk} =2+ > 0(k) apz* € A(n) (14)

k=n+1 k=n+1

with multipliers’ sequence:

Proof. First we need to establish the fact that
tim [0(k)|/* =1 o
k—}m

for (k) = Ax/A1. Denote, for brevity in the proofs of this and the next theorems,

ai=%+0+1, b=v+l, &i=k/B, an
c=a;+n+1)/8, d=b+Mn+1)/6 (=1,....m k=n+1,...),

from where and from (12) evidently,
a; 2 b, ¢ =2d; and k;— oo (i=1,...,m) as k— oo.

The known asymptotics

F(b + K;) ~ K/b—a
I'(a+ k)

as K —>0o0

yields

T(b; + £) 1k —s\VE _ a0 [ s\ VR
[I’(ai—l—n)} ~ ()= () (07)

and the limit equalities lim k/* = 1, lim ql/ k =1 for ¢ =const give:
k—o0 k—o0

F(lh + K)i)

mE»noo {F(ai-i-lii) =L..m).

a 1/k
( ﬁl/ﬂ)} 1 @

]l/kzl and hm [W

We have then

. T(bi + ki) 1% [T(ai + 1/8:) 1"
klin;o|9( )Il/k_kll» H[F((az+m§] [ (Z +1/ﬂz)} =1

which is (16).
Under the assumptions of the theorem, Lemma 0 guarantees that

~('h) (5){2} =2 and ”(’Yz 5z { k} e(k) zk



and term-by-term integration of power series (1) gives series (14). By virtue of the Cauchy—Hadamard
formula, the radius of convergence of the first series, as an analytic function in the unit disk, is

~1
R= {klim |ak|1/ k} 2 1, and that of the latter series is calculated by
—00

~ - -1
R { T Jax] V" - |0(k)|1/’“} ,
k—oo

therefore R > 1 and the image I~(7f)’(5i) z) given by series (14) is analytic in the unit disc, too.
- (ﬂl)’m g y

j('Yz; ,(03)

series with positive (like in A(n)) and negative (like in T'(n)) coefficients into series of the same kind. m

Note that due to positiveness of the multipliers 6(k), the operator preserves the map of the

o0
The Hadamard product (convolution) of two analytic functions in U:  f(z) = . apz* and
g(z) = 3 bpz* is defined by
£=0

(f*9)(z) :== i arbpz.

k=0

Theorem 2. In the class A(n) the generalized fractional integral (13) can be represented by the
Hadamard product
i),(6s
IO £(2) = (hx £)(2), (18)

where the function h(z) € A(n) is expressed by the Wright generalized hypergeometric function (5)
[ee]
hz)=z+ Y 6(k)2*

k=n+1
71'*‘5 +1+1/ﬂ1) n+1 o (171)7(%"'1+(n+1)//8i71/ﬂi)71n ) 19)
T(v: + L+ 1/8) T it G 14+ (4 1)/Bu 18 )

m
=Z+

Proof. Changing the index of summation and using the short denotations in (17), we get

h(z) =z + Z 0(k)2* =z + +1§:)\]+(n+1)2
k=n+1
_. Z"+1 00 F(d +J/ﬁ1 4
JRADY ,;0{ a+ )Hr(cm/ﬂ)}

P ( (171)7(dlal/ﬁl)""a(dmal/ﬁm) )
=z+ m+1¥m 12

A (c1,1/B1), -, (emy 1/Bm)
which gives (19). -
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Corollary 1. Forn =1 in the classes A, S and T, the representation of the “convolution function”
h(z) in (19) simplifies as:

z2 (171)7(7i+ 1+2/ﬂ171/ﬂ2);n
h(z):z-}—;\——m_H o 32 (20)
1 (vi+ 0 +1+2/B:,1/6:)]

We now consider the case when all §; = > 0 (i = 1,...,m), and especially for shortness of
denotations, it is taken 8 = 1, for the generalized fractional integrals with Meijer’s G-function in the
kernel,

1 m
1 (i + 0:)]
I8 =100 e =5 [ et lo| " 7| o) (21)
1 0 (%)1

Corollary 2.  For the operator (21) the simpler representations of multipliers’ sequence 6(k) and
convolution function h(z) take the forms

1 (v + 21
ok) = T —2t20t S0 (hentin+2,... 22
() H(%+6 + 2)k—1 (k=n+1n+ ) (22)

with (a)r =T'(a + k)/T'(a) denoting the known Pochhammer symbol, and

m L(vi+2+n)7
=z+ H (% 2 2"t m+1Fm ' 2] - (23)
(i + 6 + 2)n (vi+ 6 +2+n)P

Forn =0 (i.e. in the classes A, S, T'), h(z) simplifies to a m+1F,-generalized hypergeometric function:

L(v+2)7 )
s 2 .

(24)
(vi+ 06 +2)7"

h(2) =z + 2% mi1Fm (

Many special cases of operators (13), or of their modified form cz% j}'y’)) (1) f(2) with ¢ = const
and Jp = 0, especially in the case with kernel-function reducing to Meijer’s G-function, have been
used very often in the univalent function theory, like the known operators of: Biernacki, Komatu,
Libera, Rusheweyh, Owa and Srivastava, Carlson and Shaffer, Saigo, Hohlov, etc. (see the examples
in [8, Ch.5], and details in Kiryakova, Saigo and Owa [10], Kiryakova, Saigo, Srivastava [11]). Thus,
the results below give as corollaries corresponding properties of all these operators.

3. Distortion Inequalities in the Classes So(n) and Ly (n)

A function f(z) belonging to S(n) is said to be starlike of order a (0 £ « < 1) if and only if it
satisfies the inequality

m{z;ég)} Sa  (zeU) (25)



and this subclass is denoted by S, (n). Further, f(z) € S(n) is said to be convez of order o (0 £ a <
1) if and only if
zf”(Z)}
R {1 + >« zeU 26
e (=€) (26)
and the subclass is denoted by K, (n). We note that f(z) € K,(n) if and only if zf'(z) € Su(n), and
also for any 0 £ o < 1,

Sa(n) C So(n), Ku(n) C Ko(n) and Ky(n) C Sa(n).

The classes S, (n) and K, (n) have been recently studied by Srivastava, Owa and Chatterjea [30].
For n = 1, these denotations are usually used as S,(1) = S*(a), Kq(1) = K(«), which are introduced
earlier by Robertson [20]. Especially, taking o = 0, we obtain the well-known classes S* and K of
starlike and convex functions in U, respectively.

In the class T'(n) of functions (2) with negative coefficients, we take now the respective intersec-
tionsfor 0 S a<1, neN:

Ta(n) = Sa(n) NT(n), La(n) = Ka(n) N T(n). (27)

The latter classes were considered by Chatterjea [1] and in particular, case n = 1 gives the Silverman’s
classes T*(ar), L) [27].

For functions of these classes we propose here some distortion inequalities in terms of the gener-
alized fractional calculus operators (13).

We need first the following two lemmas given by Chatterjea [1].

Lemma 1. Let the function f(z) € A(n). Then f(z) is in the class T, (n) if and only if

o0
3 ’1“ Car 1. (28)
k=n+1 —a

Lemma 2. Let the function f(z) € A(n). Then f(z) is in the class Ly(n) if and only if

o0
3 Mak <1 (29)
k=n+1 -

Applying Lemma 1 and Theorem 1, we obtain

Theorem 3.  Let conditions (12) be satisfied and the function f(z) € A(n) belong to the class
Ta(n). Then the following inequalities hold for z € U :

11—«

7(v:),(63) > _ ntl

TG @] 2 Jel = === 6+ 1) (30)
and

7(74),(8:) < l-a n+1

TG0 1) Sl + =g fn+ 1) |2, (31)
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where the multiplier 6(n + 1) is defined as in (15), namely:

Plyi+14+(+1)/6:;)T(vi + 6+ 1+1/6;)
T(vi+0+1+(n+1)/8)T(v+1+1/6)

O(n+1) = ﬁ > 0. (32)

i=1
Equalities in (30) and (31) are attained by the function

flz) =2 — n;—fa L (33)

Analogously, an application of Lemma 2 leads to

Theorem 4.  Let conditions (12) be satisfied and the function f(z) € A(n) belong to the class
L,(n). Then the following inequalities hold for z € U :

709i),( S __l-a n+1) .4, 4
TG 1] 2 1 nii-a nti (34)

and

l—-a 6(n+1) !

m) (6 <
fuw_wd+n+1_a e

(35)

where the multiplier 6(n + 1) is defined as in (32). Equalities in (34) and (35) are attained by the
function

-« Zn+1
n+1l)(n+1-a)

Sy =2 (36)

Proof of Theorems 3 and 4. The main point in this proof is that the multiplier function 6(k)
is nonicreasing for £ 2 n + 1. To verify this, let us start from that the known Digamma—function
¥(x) = I'(z)/T'(x) is increasing for all z > 0, for which ¢/(z) > 0 for all  # —n. This follows from
the known logarithmic convexity of the Gamma-function, for example, from

oo
’ 1
1/’(55)=Z"—7 .’L’—',éo,—l,
= (x+k)?
(see the representation for (™ (z) in [15, App. IL.3]). Then,

Do) T _
T(z+¢e) ~ T(x)

Yz +e) = P(x) for >0,

or, for the auxiliary function I'(z) := ['(z + €)/T'(z) has a positive derivative

_I(z+e)(z) —T(z+e)V(z)

/
IM(z) = () >0 for z>0,e>0.

Then, I'(z) is also an increasing function, and so,

I(z+¢) > I'(y+e¢)
Lz) = T(y)

whenever = = y > 0.



This, by the replacement € — 1/8;,z — a; + k/B;,y — b; + k/B; (according to the notations in (17)
and a; 2 b; > 0) gives

Llai+(k+1)/8) < T(bi+ (k+1)/5i)

2 1=1,...,m),
T +5/8) = TthB) | :
therefore the required nonicreasing property for (k) follows:
6(k) H D(bi+k/Bi)  T(ai+ (k+1)/6) >, (37)
0(k+1) I'(b; +(k+1)/,8i) C(ai +k/B:)
Hence,
0<6(k) £0(n+1) foreach k =n-+1, (38)

and for f(z) of the form (2),

i H(k) akzk

k=n+1

i),(0;
Topm 1] 2 141

11—«
n+1—a«

)

|2l = 0(n + D[] > a 2 |2| = 0(n+1)|z*F!
k=n+1

1\

since in view of Lemma 1 (see (28)), we have also

[eS)
Z ag é —lza—
k=n+1 ntl-a

Thus, inequality (30) is obtained. Next inequality (31) can be proved similarly and Theorem 4 follows
in analogous way by the application of Lemma 2. [ ]

Corollary 3. If we set n = 1 and o = 0, we obtain for the subclasses of starlike and convex

functions in U, respectively

fesnT) = 1) 2 el - 22 e, 175 < e+ X2 g

FeRNTQ) = [T1()) 2 1ol - 22 a2, (7)) < Jof 4 22 o

with the multiplier

o(2) = T] LQut L+ 2/B)0 0+ 6+ 1+ 1/6)

o P+ 0 +1+2/8)T (v +1+1/8:)

Remark. The case m = 1 gives respective estimates for the classical Erdélyi-Kober operators (9).

As applications of the above general results, we can derive the same kind ones for the operators
by Saigo ([21]-[23], [31]), and by Hohlov ([3], [4]) as well as for the fractional integrals and derivatives
involving the Appell’s F3-function, recently studied by Saigo et al. [24], [25]. All these cases fall in
the scheme of the G-function generalized fractional calculus operators (21) and the details are given

in Kiryakova, Saigo and Owa [10].
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4. Some Characterization Theorems in the Classes S*(n) and K (n)

Now we consider some sufficient conditions for the operators of generalized fractional calculus to
produce starlike and convex functions. Namely, we denote by S*(n) the subclass of A(n) of functions
satisfying (25) with a = 0, i.e. S*(n) := Sp(n). Analogously, K(n) := Ko(n) is the subclass of A(n)
of functions f(z) satisfying (26) with a = 0.

From Silverman’s results [27], one can formulate the following auxiliary lemmas.

Lemma 3. If the function f(z) € A(n) satisfies the condition
o0
Y klax| £1, (39)
k=n+1
then f(z) € S*(n). The equality in (39) is attained by the function

k

oo
z
g1(z) =z+e(n+1) Z ——— (e =const, |[¢e|]=1, z€U). (40)
Mo k2(k+1)

Lemma 4. If the function f(z) € A(n) satisfies the condition

Y Kla £ 1, (41)
k=n+1

then f(z) € K(n). The equality in (41) is attained by the function

oo Sk
g2(z2) =z+e(n+1) Z ——— (e =const, | =1, z€U). (42)
k=n+1 k3(k: + 1)

For the generalized fractional integrals (13) we obtain then the following sufficient conditions.

Theorem 5. Under the condition (12), if the function f(z) € A(n) satisfies

o0
1
Y Klag] £ ———, (43)
My O(n+1)

then j};l’))x')f(z) belongs to the class S*(n).

Proof. We use again the inequality (38). Then, for the function

o0
If(z)=z+ z by.2"
k=n+1
with coefficients by, = 6(k)ay, we obtain

oo o0
> kb S0(n+1) > kap S 1. "
k=n+1 k=n+1



Analogously, using Lemma 4, we obtain

Theorem 6. Under the condition (12), if the function f(z) € A(n) satisfies

s 1
> Klagl £ 7—, (44)
Mo O(n+1)

then j}g:))r(gi)f(z) belongs to the class K(n).

Remark. Examples of functions satisfying conditions (43), (44) are the functions

1 zhko 4 ) 1 zko
Z)=2z+4+ ——~ —— an Z)=z+ —— -5,
g3( ) e(k()) kO g4( e(ko) k(%

respectively, with some ko > n + 1.

5. Special cases

Obviously, putting in results here 5; = 1(i = 1,...,m), we obtain analogues of Theorems 1-6
for the generalized fractional integration operators with G-function kernels (see Kiryakova, Saigo
and Owa [10]). Then, the same type results follow for a number of integral operators (or, integro-
differential and differential operators, when considering the respective generalized fractional deriva-
tives) that are rather popular in univalent function theory but follow as special cases (mainly for
m = 1,2 and one example for m = 3).

In Saigo [21], [23], the following operator of generalized fractional integration and differentiation
that involve the Gauss hypergeometric function have been introduced:

oot

gz =op [EZET (a+ s -main=2) s (45)
0

(o)
for real parameters a > 0, 8, 7. First, operator (45) has been considered for real-valued functions and
used for solving boundary value problems [22], [31] for the Euler-Darboux equation, but Srivastava,
Saigo and Owa (see for example, [32], [13]) have applied it to classes of univalent functions.

The “normalized” operator of (45) falls in the scheme of operators (13) with m = 2, namely:

T80 (2) i r'(2 ;(g)f(; I 707[)+ ) .8 B f(2) = I'(2 ;é)f(; i ;v)+ n) I(({))I)ﬂ,éO),(—n,a+n) £(2) (46)

and has respectively, multiplier sequence and convolution function of the forms:

(=B 41+ 2)k_1k!
(=B+2p-1(a+n+2)p—1’

(B+n+Qu(n+ D oy o [ DO 2 2ER
ARREY ) 32 ]
(=B + 2)n(a+n+2), —B+2+n,a+n+2+n

o(k) =

hz) =2+

Especially in the class A = A(1), its convolutional representation turns into:
13 _ﬁ + Ui + 27 2 )
iz ).

I%Pf(2) = h(z) * f(2) with h(z) =2+ 2% 3F ( ’
—B+2,a+n+2
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For the corresponding results in the classes we consider, for any n € N under conditions 8 —n <
2,a+n 2 0,n < 0 (see Kiryakova, Saigo and Owa [10]).

In [3], [4] Hohlov introduced a generalized fractional integration operator defined by means of the
Hadamard product with an arbitrary Gauss hypergeometric function:

F(a,b,c)f(z) :== z 2 F1(a, b;c; 2) * f(2). (47)

This three-parameter family of operators contains as special cases most of the known linear integral
or differential operators, already used in univalent functions theory, namely: the Biernacki operator,
Rusheweyh derivative, generalized Libera operator and its inverse, Carlson-Shaffer operator, etc. For
details, see Hohlov [3], [4], Kiryakova [8], Kiryakova et al. [11], [12].

This rather general Hohlov operator (47) also follows as a particular case of generalized fractional
integrals (13):

Fa.b,9/() = mao Ts 016 = Ted 207 10). (48)

Thus, Theorems 1-6 give corresponding results for this operator, and also for all its special cases.
The conditions (12) now are: 0 < a <1, 0 < b £ ¢c. We will refer here only to the form of its
multipliers and convolution function, namely:

(@)r—1(b)x—1
(Dr-1(c)k—1’

(@)n(®)n
+ n!(c)n o

resp. in the class A = A(1) : h(z) = z 2Fi(a, b;c; 2), a result that conforms with original Hohlov’s

(a)n(b)n

nl(c)n ’

0(k) = resp. O(n+1)=

h(z) = 3Fy(l,a+n,b+n;c+n,1+n;2) in A(n),

representation (47).
In [24], [25] Saigo and his co-worker investigated in details the operator of generalized fractional
integration which involves the so-called Appell’s F3-function:

[ (z— &t -

I(e, o, 8,87) f(2) = Z_a/ I'(v) :
0

(0B Bl - S =) ke, ()

but can be decomposed also as products of three Erdélyi-Kober operators (9). Asshown by Kiryakova
[8], this is an example of generalized fractional integrals (7), (13) of multiplicity m = 3, and could
be represented also in the form

’ 1 3.0 a_al+ﬁ7’y~2a/7’y_a,_ﬂl
I, o, 8,859 f(z) =277 [ Gy3 |o f(zo)do.
3,3
0 a_alng_al7’y_2al'—/gl
Then,
Ie, o, B, 87) () = 2o TG 02 G mhed ). (50)

and for the “normalized” F3-operator of form (13):

Tf(z) = I(a, o, B, B'57) f(2) = 277 (o, &, B, B3 7) f (2)



we can apply all the results for classes of univalent functions, already obtained in Theorems 1-6. Let
us mention that in this case the convolution function h(z) expresses in terms of the 4F3-function.
Details can be seen in Kiryakova, Saigo and Owa. [10].

Now, we consider some two examples of integral operators, studied recently in classes of uni-
valent functions, that fall essentially in the case of generalized fractional integration operators with
(ﬂl:ﬁ%”-vﬁm) 7é (1717"'71)'

These are integral operators, considered in several modified forms by Raina et al. (see Raina [16],
Raina end Bolia [17], Raina, Saigo and Choi [19], Raina and Kalia [18]), and others).

The first operator, in the case of functions f(z) of the class A(n), is (see for example [18, p.337,

(2.3), (2.5)]):

Té (a,¢;n) f(2) = ®5(a, ¢ 5 2) * f(2) (51)
with
. I‘(c+(p—1)C) F(a+(p—1)A+nA)
o, emi2) = Fo T A - Z - DC T
_ et (-1)0) , (1,1),(a— A+nA4, A) .
T(a+(p-1DA) Wl( (c-C+nc,0) )’ 52

and the second (note that 8 > 0 here was denoted by m in the original papers by Raina et al.) is a
composition of two operators as above, T4 (a, ) := T4 (a,c;1) (n = 1 is taken for simplicity):

MEEf() i =T+ B1—pu+ B THA+n—p+B1+n—X+pB) f(2)

_TA—p+BCA+0=2+8) /5
T TTA+ AT +n—p1P) P Dl £(2). (53)

Then, for 0 S A< 1; p,n R, B> 0,8>max{\—n—1,u—1},

d | zBw-n 7 B8
A1) % )z - - B _ 1B8\—A _ el )1 Y 8
DO,z;ﬁ (Z) dzB { 1-\(1 — )\) J (z 3 ) 2F1 I3 Al n; 1 Al 2B f(t)dt (54)

is the fractional differential operator, corresponding to the so-called modified Saigo operator Ig‘ b

(see the same papers by Raina et al., and compare with expressions in (45), (46)),

BA+np) 8
i3 1) = /(z -2ty (/\+u, - A1 — z_ﬁ) f(t)dt? (55)

in our denotations (7), (13).

It is seen then, that for =1,n=1, A=C =1, 0 < a < ¢, the operator T(‘}‘(a, ¢;n) reduces to
the Carlson-Shaffer integral operator L(a,c), defined by Hadamard product with a Gauss function,
and easily seen to be a special case of the Erdélyi-Kober operators (8) (see e.g. [10]):

L(a,c)f(2) = ®(a,¢;2) * f(2) = {z 2F1(1, 0;¢; 2)} * f(2)

1
— F(C) . c—a—lo_a—Q 20)do = F(C) a—2,c—a >
~T(@)T(c—a) 0/(1 ) f(zo)do = 30 (). (56)
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The operators (53), (54), i.e. MZ)‘;’[;’" or D())‘,’Zg, reduce for 3 = 1 to the hypergeometric fractional
derivative (resp. integral (45)) with a Gauss function, studied by Saigo et al.

The operators (51)-(52) with A = C = 1/ and (53)-(55) are special cases of the generalized
fractional integrals (7), (13), resp. for m = 1 and m = 2 (with 4; = C; = Ay = Cy = 1/8, ie.
B1 = B2 = B > 0). Evidently, m-tuple compositions of operators (51), (52) give operators of form
(13) in the general case m > 1.

Results for above two operators have been obtained by Raina et al., for example as follows: an

analogue of Lemma 0 (for D(’)\ f’é’), and respective operational properties of both operators D(’)\ f’g,

M Z’\;é"" —in Raina [16], where as applications some inequalities for the Wright functions ,¥,, (5) have

been derived; some characterization theorems — for D())‘ ’fg in Raina, Saigo and Choi [19], and - for

M z'\ﬁ’”' in Raina and Kalia [18], etc. Evidently, the results presented here for generalized fractional
calculus operators (13) give, as special cases, also a series of other corresponding analogues for the
mentioned two operators.
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