Numerical Analysis on Connection Problem of a Fiber to
an Embedded Waveguide with Rectangular Cross-section
Using Fourier Series Expansion Method ™
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An effective numerical method, Fourier series expansion method, is presented for connection
problem between two three-dimensional optical waveguide systems. As the numerical example, we try
more accurate full-wave analysis on connection problem of a step-index optical fiber to an
inhomogeneous embedded optical waveguide whose relative permittivity distribution in the rectan-
gular cross section is parabolic. Then the effects of the gap and the transverse shifts between both
waveguides are made clear, comparing with the case of homogeneous embedded optical waveguide. It
is also confirmed that this method is effective for more accurate full-wave analysis of various kinds of
three-dimensional waveguide systems constructed by arbitrarily shaped waveguides with arbitrary

medium.
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1 Introduction

Practical optical waveguide system is usually
constructed by complicated three-dimensional
waveguide, then reflected and radiation fields must
be taken into consideration. Moreover, in the cases
where the waveguide has large transverse refractive
index difference (An) or mode conversion occurs,
full-vectorial analysis is needed, and rigorous
analysis on such waveguide system is important for
precise designing of various optical devices.
However, it seems very difficult to practice rigor-
ously full-vectorial analysis on complicated three-
dimensional waveguide system including large An.
Many approaches have been attempted so far. For
examples, the waveguide systems with tapers,
branches and directional couplers and also the dis-
continuity problems, using finite-difference time-
domain (FDTD) method®” and beam propagation

method improved so as to include reflection field
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(BPM) ®~® and so on. As for the problems includ-
ing reflection field, three-dimensional waveguide
system has been analyzed by Vassalo®, but they are
not full-vectorial analysis and limited in the case of
smaller An. Kendall et al. have tried full-vectorial
analysis for connection problem of two waveguides
using free space radiation method. However it is not
effective for the waveguide including the larger
transverse index variation of the structure com-
posed of three layers, such as, film, substrate and
cover(air) in usual thin-film optical waveguide.
Pregla et al.” also proposed full-vectorial analysis
for three-dimensional periodic waveguide using
MOL-BPM, but actually they calculated two-di-
mensional case. On the other hand, although the re-
flection is not treated, vectorial analysis for uniform
waveguide has been reported by Kendall et al.®,
Rahmann et al.” and Marcuse”. They have used E
or H vector wave equation, then the solutions ob-
tained by each equation are not always coincident.
Generally speaking, numerical approach on full-
vectorial treatment of three-dimensional compli-
cated waveguide system including the case of large
An needs large computational memory and time, and
various

many researchers have developed
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approaches to reduce computational effort.
However, because of rapid progress of computer
technology in these days, such a computational
effort does not seem to be so severe. Then, putting
emphasis on accuracy, conveniency and simplicity
of the algorithm, we have proposed a full-vectorial
straightforward method, Fourier series expansion
method, for three-dimensional complicated
waveguide system in which Maxwell equations are
solved directly instead of wave equations.

The basis of the method has been proposed by

1 an, az

Rokushima et a for diffraction problem, and

Hosono et al."? Yamakita et al."? and Yasumoto et
al."9- 19 mainly in the two-dimensional waveguide
system by scalar analysis. Recently, we have ex-
tended it to full-vectorial analysis of various kinds

A7)~ (29) In

of three-dimensional waveguide systems
this method, virtual periodicity in both transverse
directions is introduced into the waveguide struc-
ture, and the original waveguide is approximated by
one period of the waveguide arrays. Under assumed
periodic  condition, Maxwell’'s equations are
discretized directly. That is, both electric and mag-
netic fields which satisfy Maxwell's equation are
expanded in double Fourier series using the complex
trigonometric functions. Then the problem is re-
duced to a simple eignvalue one of a set of linear
equations for the Fourier coefficients in which any
transverse derivatives of permittivity of the medium
is not included, and the whole fields can be obtained
simultaneously by solving one fundamental equa-
tion. Those features mentioned above are said to be
advantages of the proposed method. Thus the
solutions yield the full-vectorial fields for the guided
and discretized radiation modes, propagating both in
forward and backward directions along the
waveguide even in the case of large An. The accu-
racy of the solution can be improved by increasing
the truncation number of the Fourier expansions, al-
though the computational cost increases. Numerical
method using Fourier series expansion has been also
reported by Henry et al.®? for scalar wave equation,

40 (already cited above) for vector

and Marcuse
wave equations. However they solve wave equation,
then the solution obtained by wave equation on the
electric field is not always same with that obtained

by wave equation on the magnetic field ™.

Using the Fourier series expansion method, we
have analyzed a step discontinuity problem in
three-dimensional waveguide systems with
inhomogeneous core, using the proposed full-
vectorial method®: ®@~®  This time we analyzes
the connection problem of a step-index optical fiber
(radius r=32, 44, refractive index difference An
=0.3%, 1.0%) to an embedded thin-film optical
waveguide (An=0.6%, 1.0%) with inhomogeneous
relative permittivity distribution in the rectangular
cross-section (81 x42) ®: @7 Then the effects of the
gap and the transverse shifts of the center axes be-
tween two waveguides are made clear, comparing
with the case of homogeneous permittivity distri-
bution.

2 Formulation of the problem

As the three dimensional waveguide system, we
consider Fig.l. That is, a dominant mode is incident
from a step-index optical fiber (region 1) to a semi
-infinite embedded thin-film optical waveguide with
rectangular cross-section (region II), through the
gap (region II). Then more accurate analysis is
tried to the guided and radiation modes propagating
both in forward and backward directions along the
waveguides. In this paper we assume exp (jwt), and
w is angular frequency of the incident wave. In Fig.
1, e and g, are relative permittivities of the core and
cladding in optical fiber, respectively, €, is that of the
gap region, and & (x,y), &, and ., are those of film,
substrate and cover in region I, respectively. For
convenience, we normalize the coordinate variables
by the wavenumber k, (=wye,, ) in free space, the
electric field by (e, /u,)"", and the magnetic field by
(uo/e)'™, where g, and u, are permittivity and per-
meability in free space, respectively. Then the nor-
malized electric and magnetic fields satisfy the
Maxwell’s equations:

VXE(x,y,2)=—jH(X,y,2),
VXH(x,y,2)=je(x,y)E(x,y,2) (1)
where &e(x,y) includes the whole relative per-

mittivities in the cross section concerned.

3 Numerical method

More detailed algorithm of the method is ex-

plained in the literatures™ @,

To solve eq.l in each region, we introduce an
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Fig.1 (a) Side view of the waveguides system and
(b) cross-sectional view of the first period of
the assumed periodic waveguide array

artificial periodic structure with the periods A, and
A, in the x and y directions, respectively, and ap-
proximate the original waveguide structure in terms
of one period of the periodic arrays as shown in
Fig.1(b). For the assumed structure, E,(x,y,z) and
H,(x,v,2)(i=x,y,2) are approximated by the trun-

cated double Fourier series expansion as follows

M N .
Elxyn= 2 ¥ e, (zexp(—jsmxexp(—jtny),

M N .
H/(x,y,2)= ;M 727Nh‘m'n(z)exp(—jsmx)exp(—jtny),

i=x,v,z, s=2n/A,, t=2m/A, 2)
Equation 2 is substituted into eq.l. The resulting
equations are multiplied by exp(jsm'x)exp(jtn’y)/
(AA,) and integrated over 0<x<A_ and 0<y<A,.
Using the orthogonality of the complex Fourier
series, they are lead to a set of linear differential
equations in matrix form for the expansion coeffi-
cients {el, ()} and {hi, ()} (=x,v):
df(z)/dz=—jCf(z) (3)

Here, we introduce vectorial notations for the

expansion coefficients as

e'(n)= [eifM,7N..'eifM,N“.e}\'l,fN“'eiM,NJt’

h'(z) = [hLM,71\'“'hifM,N"'hiM,7.\1'“hiM‘\I]I! i=x,y

t(z)=[e*(2) e'(z) h*(2) ()] (@)
and define the cyclic matrix A of order K
(K=(@M+1) @N+1)) which consists of the double
Fourier components of e(x,y) as

A=le,.], (5)

1 Ay Ay .
Epa= A4, IO' dxfo‘dy e(x,y)exp(—jspx)

exp(—jtqy)  p=m-m’, g=n—n’ (6)
and the superscript “t” in eq.4 indicates transpose of

vectors. Then C is expressed as

0 0 MA'N —MA 'M+I
B 0 0 NA'N-I —NA'M
—NM M*—A 0 0
2
—N?’+A NM 0 0 "

of order 4K, where 0 and I are the null and unit ma-
trices of order K. The diagonal matrices M and N of
order K are defined by

M=[sm6,,, 6,,], N=[tnd,, 0, (8)

where 6, is the Kroneker’s delta.

Thus the problem of the mode propagation in
each region is reduced to an eigenvalue problem of
the matrix C, and we can utilize the standard
calculational subroutine. The order of obtained
eigenvalues r,(K=1,2,-+ ,4K) is generally unre-
lated to the order of actual eigenvalues of the
waveguide. Then we rearrange the order of k£, ac-
cording to the magnitude of |«,|, after labeling the
forward propagating modes as “+” and the back-

“_»

ward one as “—”. Thus the k-th mode satisfying
|k, | >ve, is the guided modes and the case |k,]|
<ye, is the radiation modes. In the case where &, is
imaginary, the field becomes evanescent wave. Here
the eigenvalue k, for the radiation mode is obtained
by discrete value because of the assumed periodic
structure. From the rearranged eigenvalues Tk,
(=8,/k,) (k=1,2,--+,2K) of matrix C and the asso-
ciated eigenvectors Pki, we can determine propa-
gation constants *4,, field distributions, and polari-
zation states of both guided and radiation modes
which are propagating in the +z directions.

We introduce a new vectorial function a(z) of
order 4K which satisfy



f(z)=Pa(z) (9)
Here

P=[P" P ], P =[P P - Py,

az)=[a" (2) a (2], a (»=[a, a, Ay '

(10)
where all is a complex mode amplitude for the k-th
eigenmode, propagating along +z directions. Then
the solution of eq.3 is obtained as follows :
expl—jr,(z—2y) 16 0

f(z):P{ 0 explin,(z—2,) 16

}a(zo)
(11

Here the bracket [ | indicates a diagonal matrix of
order 4K and a(z,) is the value of a(z) at z=z, Thus
electric and magnetic fields can be obtained by
substituting each component of eq.l1 into eq.2 for
each normalized propagation constant £, in the k-th
mode. The eigen vector P, is normalized so that the
power carried by the respective k-th mode along z

. . 2
direction equals to |a,[* .

4 Application to the connection problem

Now, we apply the method to the connection
problem as shown in Fig.1. Expansion coefficients in
vectorial form in each region are expressed as f'(z)
(i=1, 1T, II) by eq.ll, respectively. Similarly,

complex amplitude vectors, eigenvalues and
eignvectors are expressed as a'(z), k, and P'(z) (i=
1, I, II), respectively.

The boundary conditions for transverse electric
and magnetic fields at z=z, and z, are satisfied by
equating the respective Fourier coefficients in
vectorial form for the fields in both sides of the

boundaries as follows :

f'z)=1t"z), £"(z,) =f"(z,) (12)
They are lead to the following equation
a'’ (Zz)} m+ -1 m+ —1{31]1 (Zz)}
=[P" —A, -P A
L“(O) [ 1 3 a' " (0)
(13
where
_pl exp(—jr{ (z—2))8 0
[Al A2] P [ 0 exp(jlff(] (2721))5“(
B (—ijrlz) 0 0
pIy Ip! {EXP k Z1) Ok . J
®5 0 exp(rlz)0.
(19

As initial conditions, we consider the incidence of
dominant mode HE|, from optical fiber in region I
and no reflection in the region I due to the

)
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assumption of semi-infinite waveguide. That is

a'" (=010 0] a" (z)=0 (15)
Substituting eq.15 into eq.13, we obtain the solutions
a""(z,) and a' ~(0). From these solutions, we obtain
the transmitted powers of guided and radiation

modes as
Ky ) 2K )
T,=X laf " (z) " T.= X lal " (zy]| (16)
k=1 k=K,+1
respectively, and the reflected powers as
K ) 2K )
R,=2lal (OF, R,= X laj (O] (an
k=1 k=K, +1
respectively, for each distance Az of the gap (region
II) and transverse shifts along x and y directions of
the center of the embedded waveguide. Here
T,+T,+R,+R, =1 (1)
K, and K, are the numbers of guided modes in region
I and II, respectively.

5 Numerical results

In the computation, the parameters in Fig.1 are
chosen as \/521.5, \/221-4955 (refractive index
difference An=0.3%), 1485 (An=1.0%), yAe =15—
Ve, , Ve, =1491(An=06%), 1.485 (An=1.0%), Ve , =
1.0,@11.0,1.5, r=31,41,a=b=42 and A=A, ,=304.
In this paper, circular core of optical fiber is approxi
mated by rectangular arrays, and the convergency is
shown in Fig.2 when the number of rectangular ar-
rays L is increased. In practical computation we fix
L as 100 which is seemed to be sufficient. In the case
of inhomogeneous permittivity distribution in the
embedded
waveguide, we assume parabolic profile as

e (x,y) =Ae(1— (x—h)*a) (1—(h,—y)*/b) +e,
(19
and in the case of homogeneous distribution as
Ver(xy) =15.

The convergency of normalized propagation

rectangular cross section of the

constants ) and x} in dominant modes HE} (E,:
dominant field) and EHJ] (E,: dominant field) is
shown in Fig.3(a),(b), respectively, when the trun-
cation number M (=N) of the expansion in eq.2
increases. For smaller An, the convergency is faster.
It is confirmed that the accuracy in the fiber is better
than that in the embedded waveguide with rectan-
gular cross-section. The convergency of the trans-
mitted power T,, of EH]] mode is shown in Fig.3(c).
It is confirmed that the accuracy of the field
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Fig.2 Circular cross section of the step-index optical
fiber approximated by rectangular arrays and
convergency of normalized propagation con-
stant £, when the number L of rectangular
arrays increases, in the case of r=34, An=1.0%,
M=N=10

intencity becomes worse by about two or three fig-
ures than that of propagation constant. It is also
confirmed that the convergency for /cgl in the case of
homogeneous waveguide is faster than that of
In the fol-

lowing computations, we fixed M(=N) as 11, which

inhomogeneous waveguide (Fig.3(d)).

seemed to be sufficient in order to explain the

propagation characteristics of each waveguide sys-

tem.

In Figs.4 and 5, it is confirmed that, for smaller

An (solid curve), the field distributions become
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broader. It is noted that the peak point in the field
the embedded

waveguide is more shifted toward the substrate, for

distribution along y-axis of
the case of smaller An. This tendency is stronger in
the case of inhomogeneous case. It is also confirmed
that, in the case of inhomogeneous waveguide, the
field distribution is more concentrated in the center
than the case of homogeneous one.

From Figs.6(a)~6(c), it is confirmed that the
transmitted power T, decreases more slowly in the
cases of x/g:L5 (matching oil) and smaller An,
when the gap distance Az is increased largely (upper
figure). In the case of Jg: 1.0 (air gap), however, it
should be noted that, because the gap region be-
comes a resonator, the transmitted power T, be-
comes maximum when m is even number in
Az=m2/4 and minimum when m is odd number, as
shown in each lower figure for fine variation of Az.
Then, it is noted that the maximum power of the
transmitted guided modes T, decreases by about
15% due to the appearance of the reflected guided
modes R, in the case of the worst coupling in the air
gap connection, while the transmitted radiation loss
T, is kept almost constant value (R,~0). It should
be noted that transmitted loss T, is smaller in the
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ﬂmogeneous) a=b=4 A

(inhomogeneous) a=b=4 A

—_
S
©
h

P

- -

S e
< (=<3
SR
\

\

\

—_
e
©
a

11
M=N

Fig.3 Convergencies of normalized propagation constants (a) /cll of the dominant mode HEﬁ1 (Ey :dominant) in

the optical fiber (r=321), (b) £y of EHJ| (E,: dominant) mode in the inhomogeneous embedded waveguide
(a=b=42), (¢) transmitted power T,=l|a}[* and (d) comparison of the convergencies between the
prapagation constants /c;]I in the inhomogeneous and homogeneous waveguides (a=b=421, An=1.0%)

(A=A, =200)
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case of smaller core radius of the fiber, then the
transmitted guided power T, becomes larger (com-
pare Fig.6(a) with Fig.6(b),(c)). It is also noted that
reflected guided power R, is smaller and the
variation of the transmitted guided power T, for
rough variation of Az is slower in the case of smaller
An in the out put waveguide (region II) (compare
Fig.6(b) with 6(c)).

Fig.7 shows the variations of each power when
the center of the embedded waveguide is shifted

along x- and y-axes of the cross section in the case of
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optimum gap distance. The transmitted power of
the guided mode decreases by about 10% even when
the waveguide center shifts only =21 for An=1.0%,
while the decrease becomes more slowly for smaller
An.
guided modes is 2, that is HEH, EHH, then the trans-

mitted mode is only EH{} (E,=0, E, is dominant) in

In those inhomogeneous cases, the number of

the case of HE], mode ( E, is dominant) incidence. It
is also confirmed that, for smaller An, as the peak
point of the field distribution along y-axis shifts to-
ward the substrate of the inhomogeneous waveguide
(refer Fig.5(a)), the peak point of the transmitted
power shifts toward the substrate, keeping the peak
power almost constant (upper figure in Fig.7(b)). It
is noted that the peak value of T, is larger in the case
of smaller core radius of the fiber (compare (a) and
).

On the other hand, Fig.8 shows the homogene-
ous case, for comparison. In this case, although
the that
inhomogeneous case, 4 guided modes for An=0.3%
(Fig.8(b)), and 8 guided modes for An =1.0%
(Fig.8(a)) can propagate. Then, as the transverse

rectangular size is same as of

shift increases, higher order modes such as EHg (for

1.0
0.8
— 0.6 )
=4 7
0.2]
0. —m———

16 17

y/ A

15 17

y/ A

Fig.5 Field distributions of EH]] (E,: dominant) along x- and y-axes in (a) inhomogeneous embedded
waveguide, and (b) homogeneous embedded waveguide, a=b=41 (——: An=0.6%, ——-: An =1.0%)
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Fig.6 Variation of each power when the gap distance Az between a step-index optical fiber and an
inhomogeneous embedded optical waveguide is changed
{left figure : rough variation of Az for x/g: 1.5(solid line) and \/g: 1.0(dashed line)
rigth figure : variation of the peak value of each power in the case of \/5:1.0 for fine variation of Az

(a) r=41 (An=1.0%), a=b=42 (An=1.0%)

(b) r=31 (An=1.0%), a=b=42 (An=1.0%)
(¢) r=32 (An=0.3%), a=b=42 (An=0.6%)

£y, EHg (for x¢) and EH}, (for x4 ) appear as shown
in Fig.8. In this case, it is noted that modes (EHg,
EHﬂ, ~~~~~~ ) whose field pattern varies along x-axis
appear only in the shift along x-axis (lower figure in
Fig.8(a)), but modes (EHJ}, -+ ) whose field pat-
tern varies along y-axis appear only in the shift
along y-axis (upper figure in Fig.8(a)). Thus, as the

shift becomes larger than only A, the transmitted
power of the unwanted higher order modes can not
be negligible. It is noted that, in the homogeneous
case, the transmitted radiation power T, is larger
(lowest figure in Fig.8(b)) comparing to the case of
inhomogeneous case (Fig.6(c)) for the same values

of An and sizes.
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Fig.7 Variation of each power when the center of inhomogeneous embedded waveguides (number of guided
modes : 2) is shifted along x- and y-axes (Az=21, R,R,~0)

(a):r=a=b=42, (b):r=31, a=b=42

[—: An=10.3% for fiber, An=0.6% for embedded waveguide]

-———:An=1.0% for both waveguides

Fig.9 LiNbO,
inhomogeneous embedded waveguide (@:2.23,
@:1.0, \/2:2.2077) instead of glass waveguide
(@:1.5 ). It is noted that the magnitudes of T,

and the difference between maximum and minimum

shows the case of Ti

values in the oscillation of T, and R, for the
Az
(Fig.9(b)) than the cases of glass waveguide (Fig.6)

variation of gap distance become larger

because of larger reflactive indices difference be-
tween ve, and vey (Ve,).

T, due to the misalignment of Az becomes larger,

Then the variation of

and the peak value of T, becomes smaller than the
cases of glass waveguide. However, it should be
noted that the oscillation as a resonator of the gap
almost vanishes for @:m: 1.8289 (dashed
line), then the misalignment problem in the con-

nection does not occur in this case, and the reflection

R, can also be neglected.

As conclusion, in the connection problem
treated in this paper, in order to obtain larger
transmitted power of single guided mode,
inhomogeneous embedded waveguide with smaller
An and fiber with smaller r are suitable. If the gap
region is filled by matching medium, the oscillation
of the T, and R, almost vanishes.

In results mentioned above, we chose the case
where E is dominant field in HE!}, mode in optical
fiber, then the transmitted mode is almost restricted
by EH}} mode whose dominant field is E,. We also
confirmed that, in the case where HE|, mode whose
dominant field is E, is incident, the transmitted
mode is restricted by HE]} mode whose dominant
field is E; and the difference of the powers T, and

T, between both cases is smaller than 05% (see
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Fig.8 Variation of each power when the center of homogeneous embedded waveguide is shifted along x- and

y-axes (Az=22, R, R, < 10 %

(a) r=42 (An=1.0%), a=b=421 (An=1.0% number of guided modes : 8)
(b) r=31 (An=0.3%), a=b=42 (An=0.6% number of guided modes : 4)

[ngz la) I*: EH{, Ty=lal *: EHg}
T,=lag [*: EHY, Te=la} [*: EH}

Table I) and R,, R, hold almost same value. In Ta-
ble I, examples of computing time and memory in

the present computer are listed.

6 Conclusion
Numerical method which uses the double

Fourier series expansion and the virtual periodicity

in both transverse directions is applied for more
accurate and full-wave analysis on the connection
step-index optical fiber to an
embedded  thin-film

waveguide. Then the propagation characteristics in

problem of a
inhomogeneous optical
the connection problem are made clear for a few re-

fractive index differences of both waveguides,
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Fig.9 Variation of each power when (a) the gap Az is changed and (b) the center of inhomogeneous Ti:

LiNbO, embedded waveguide is shifted along y-axis
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Table I . Example of each output power when HEi1
mode whose dominant field is E, or E, in
the fiber is incident

h,=152

h,=17.52(center)

Table I. CPU time and memory (super computer
FACOM VPP700,/56)

eigenvalues of all modes for

M-N-15 6 min.(240MB)

input 1 1 1 1 3 i
HE,,(E,) |HE;(Ep |HE,,(E,) | HE};(ED eigenvalues and eigenvectors of .
output A=y 1 A=y 1 all modes for M—N—15 26 min.(352MB)
T, 0.2661 0.2748 0.7668 0.7725 - 1 doi ¢ ‘
eigenvalues and eigenvectors o .
T, 06462 | 06375 | 00823 | 0.0959 all modes for M=N—11 6 min.(136MB)
R, 0.0863 0.0861 0.1311 0.1311 Zilotrineoz?sp%;tl}lifiaNnj 1p50W61”S of 79 min.(1168MB)
R, 0.0013 0.0014 0.0003 0.0003

T,=lal " (z) "(HE}) or la} ™ (z,) ["(HE[D
R,=la; (O (HE}(E)) or la; (0)*(HE(E))
2K 2K
T.= 2 laf ' z) P R,= % Jay (O
k=K, k=K,

comparing with the case of homogeneous
permittivity distribution. It is also confirmed that
this method is effective for more accurate full-wave
analysis of three-dimensional waveguide system
composed of arbitrarily shaped waveguides and
complicated structure with arbitrary medium. In
this method, saving of computational cost is also
confirmed by using a differential equation of second
order concerning electric or magnetic field, instead
of eq.3, because the order of matrix C of eq.7 can be
reduced to half 1@,
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