Development of novel reaction systems for highly sensitive and selective fluorescence derivatization of bioactive indoles

Kenichiro Todoroki

Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Fukuoka, 814-0180, Japan

Abstract

Novel fluorescence derivatization reaction systems for highly sensitive and selective determinations of 5-methoxyindoles (5-MIs) and 5-hydroxyindoles (5-HIs) have been developed. The 5-MIs, which include melatonin, its precursors and metabolites, were demethylated to the corresponding 5-HIs by electrochemical oxidation and reduction, and then selectively reacted with benzylamine in the presence of potassium hexacyanoferrate(III) to produce the highly fluorescent derivatives. On the other hand, the 5-HIs, which include serotonin, its precursors and metabolites, were fluorescently derivatized with benzylamine by electrochemical or photocatalytic oxidation without chemical oxidizing agent. The detection limits for 5-MIs and 5-HIs obtained by the developed systems were in the range of femtomole revel. These methods should be useful for medical diagnosis and investigations of many diseases.

Key Words: fluorescence derivatization, 5-hydroxyindoles, 5-methoxyindoles, benzylamine, electrochemical oxidation, photocatalytic oxidation, HPLC
【緒言】
近年、臨床診断や医薬品開発、生体機能解明研究などの分野において、生体試料中に存在する生体成分の分析が欠かせないものとなっている。生体試料は極めて複雑、多種多様な成分から構成されており、試料中の生体成分の多くは極微量で存在し、かつ不安定である。従って、生体成分分析には、高分離能、高感度、簡便性が要求される。この要求に対応できる分析手段の一つとして、HPLC を分離手段とした蛍光検出法が挙げられる。

蛍光検出法とは、励起光照射によって基底状態から励起状態へとエネルギー遷移された蛍光分子が、元の基底状態へと緩和する過程において生じた光を検出する方法である。この発光過程は短時間に起こり、繰り返されるため蛍光光子（フォトン）は積算され、さらにその光子が、光電子増倍管、CCD などにより増幅・積算されることから、放射性同位体検出法と同程度以上の超高感度を得ることができる。またその波長は蛍光物質により異なるため、生じた蛍光を分光することで、目的成分の蛍光のみを選ぶ的に検知することができる。また、近年では、光学機器の飛躍的な進歩もあってあって、生体分子を分子単位でイメージングできるほどの超高感度化も実現されている。このように蛍光検出法は優れた特性を持っているが、本法を生体成分分析に適用するには、非蛍光性の目的成分を蛍光性に変換する操作が必要になる。この操作を誘導体化といい、そのための試薬（蛍光誘導体化試薬）の開発ならびにそれらを用いた方法論の確立が必要となる。

これまでに多数の優れた蛍光誘導体化試薬が開発されているが、その一つとして、当研究室において見出されたベンジルアミンが挙げられる。
ベンジルアミンなどの芳香族メチルアミン類は、セロトニン（5-ヒドロキシトリプタミン；5-HT）などの 5-ヒドロキシインドール類（5-HIIs）と酸化剤であるヘキサシアノアノ鉄（III）酸カリウムの存在下、選択的に反応し、強蛍光性のオキサゾール誘導体を与える（Fig. 1）。

![Fig. 1 Fluorescence derivatization reaction of 5-hydroxyindoles with benzylamine in the presence of potassium hexacyanoferrate (III).](image)

本誘導体化反応で使用するベンジルアミン自身は無蛍光性であるため、容易に高い S/N 比が得られ、従来の自然蛍光法、電気化学検出法、蛍光誘導体化反応などによる検出法と比較しても極めて高感度かつ高選択性に 5-HIIs を検出できる。従って、ヒト
尿中2,3及びヒト血清中4) の 5-HIs 分析のみならず、これまでに不可能とされていた微小透析・HPLC 蛍光法によるラット5-7)やマウス8,9)脳内神経伝達アミノ類の in vivo リアルタイムモニタリングを可能としてきた。ベンジルアミンを蛻変誘導体試薬とする 5-HIs の蛻変誘導体化法はこれに非常に優れた特徴を有しているが、ヘキサシアノ鉄(III)酸カリウムを酸化剤とする化学酸化法により反応を進行させることから、以下のような問題点も指摘されている。

まず、ヘキサシアノ鉄(III) 酸カリウム溶液は有害物質であり、その不安定な性質ゆえに用時の調製が必要となること。HPLC 流路及び検出器フローセルに沈着し、感度の低下やバックグラウンドノイズの増大を引き起こす恐れがあること、また、多量に共存する酸化剤の作用により、生成した蛻変誘導体自身の酸化的分解が認められる事。さらに、化学酸化法ではその酸化電位を大きく変化させることができないため、電解酸化法などとは異なりその最適化が困難であること。などが挙げられる。

このような背景から私は、ベンジルアミンを誘導体化試薬とした 5-HIs の高感度・高選択的蛻変検出法の有用性に着目し、本法を更に改良、発展させた分析法を構築することを目的とした。具体的には、本誘導体化反応を 5-HIs のみならず、他の生体成分分析へと適用拡大すること。更には、本誘導体化反応において、ヘキサシアノ鉄(III) 酸カリウムなどの有害な酸化剤を添加する必要のないクリーンな酸化反応を導入することを研究の骨子とした。

【実験】
1. 電解反応を利用した 5-メトキシインドール類のポストカラム HPLC 蛍光分析システムの開発)

はじめに、前述の誘導体化反応に電解酸化・還元反応を組み合わせたメラトレニなどの 5-メトキシインドール類（5-MIs）の蛻変誘導体化 HPLC 分析システムを開発した（Fig. 2）。

Fig. 2 Schematic flow diagram of the post-column HPLC fluorescence detection system for the determination of 5-MIs.
HPLC により分離された 5-MIs は、オンラインで配置した電解セルにより、電解酸化還元反応を受け、5-HIs へと脱メチル化される。引き続きベンジルアミンと酸化剤の存在により蛻光誘導体化することで、高感度検出された（Fig. 3）。

Fig. 3 Fluorescence derivatization of 5-Mis by electrolytic demethylation followed by benzylamine reaction.

本システムによる 5-MIs の検出限界は、注入量当り 12-93 fmol と高感度であった。また、本システムにより 5-MIs のみならず 5-HIs、一部のカテコール類及びインドール類の分析も可能であった。本システムを市販のメラトニン製剤中の不純物解析に適用したところ、極微量の不純物であるトリプタミン（TA）、トリプトフォール（TOL）及び N-アセチルセロトニン（NAS）のピークを検出することができた（Fig. 4）。

Sample preparation

<table>
<thead>
<tr>
<th>3 mg Melatonin tablet</th>
<th>1 tablet</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% Methanol</td>
<td>12.9 mL</td>
</tr>
</tbody>
</table>

Ultrasonicate for 15 min
Centrifuge at 1,000 g for 10 min
Filtrate

HPLC analysis

Impurities

TA (23 nmol / tablet) TOL (116 nmol / tablet)

Fig. 4 Chromatogram obtained from a commercial melatonin tablet.

A portion (20 µL) of a extract sample from Mel tablet was applied to the analytical system.
また、ポストカラム反応条件を変化させることで、5-Mls 以外にも、自然蛻光性物質の Pyridoxine や 5-Hls である NAS を分離して検出することが可能であった（Fig. 5）。

Fig. 5 Chromatograms obtained from a commercial melatonin tablet.
A portion (20 μL) of a extract sample from Mel tablet was applied to the analytical system.

以上、本システムは従来の自然蛻光法と比較して、極微粒の不純物に関するより多くの情報を得ることができると示された特徴を有していることがわかった。本システムの高感度度及び高選択性を利用することで、簡便な前処理による生体試料中のイソプロール関連化合物の測定が可能になるものと考える。

2. 電解酸化反応を利用した 5-Hls のポストカラム HPLC 蛻光分析システムの開発
次に、5-Hls とベンジルアミンの蛻光誘導体化反応において、酸化剤を添加することなく酸化反応を進行させる手段として、電解酸化反応を利用した 5-Hls のポストカラム蛻光誘導体化 HPLC システムの開発を行った（Fig. 6）。

Fig. 6 Schematic flow diagram of the post-column HPLC fluorescence detection system for the determination of 5-Hls.
本システムでは、HPLC により分離された 5-HIs が、オンラインで配置した電解セルにより、ベンジルアミンの共存下、電解酸化反応を受け、蛻光誘導化される（Fig. 7）。

<table>
<thead>
<tr>
<th>Compound</th>
<th>Abbreviation</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Hydroxtryptamine (serotonin)</td>
<td>5-HT</td>
<td>-CH₂CH₂NH₂</td>
</tr>
<tr>
<td>N-Acetylserotonin</td>
<td>NAS</td>
<td>-CH₂CONH₂</td>
</tr>
<tr>
<td>5-Hydroxyindole-3-acetamide</td>
<td>5-HA</td>
<td>-CH₂CH₂NH₂COOH</td>
</tr>
<tr>
<td>5-Hydroxtryptophan</td>
<td>5-HTP</td>
<td>-CH₂CONH₂COOH</td>
</tr>
<tr>
<td>5-Hydroxyindole-3-acetic acid</td>
<td>5-HAA</td>
<td>-CO₂H</td>
</tr>
<tr>
<td>5-Hydroxytryptophol</td>
<td>5-HTOL</td>
<td>-CH₂OH</td>
</tr>
</tbody>
</table>

Fig. 7 Fluorescence derivatization of 5-HIs with benzylamine by electrolytic oxidation.

Fig. 8 Chromatogram obtained with a standard mixture of 5-HIs.

Amounts: 20 pmol each on column.

本法はヘキサシエン酸カリウムなどの有害な酸化剤を添加することなくクリーンに 5-HIs を誘導体化分析することが可能であった。また、電解セル上にパルス形电压を印加することによりピーク分離と感度を向上させることができた。5-ヒドロキシトリプトファンを除く 5-HIs の検出限界は、注入量当たり 3.2-21 fmol であり、従来の化学酸化法と同程度の感度を得ることができた。本分析システムは、5-HIs と数種のカテコールアミン類以外の生理活性物質についてはクロマトグラム上にピークを与えてなかたことから、5-HIs に対して非常に選択的であり、生体試料中の 5-HIs 分析に適用した際にも、従来の化学酸化法と同様、簡便な前処理だけで高感度・高選択的測定が可能になるものと考える。
3. 光触媒酸化反応を利用した5-HIsのプレカラム蛍光誘導体化HPLC分析1）

これまでの化学酸化法や酸解酸化法に代わる第3の酸化反応として、酸化チタンを触媒とする光触媒酸化反応により、5-HIsとベンジルアミンの蛍光誘導体化反応が進行することを新たに見出し、5-HIsとベンジルアミンの試験管内での蛍光誘導体化反応（バック法）とHPLCによる分離を組み合わせた5-HIs分析法を開発した。Fig.9に誘導体化反応操作に用いた反応装置の概略を示す。

![Fig. 9 Illustration of photocatalytic reaction apparatus for fluorescence derivatization of 5-HIs.](image)

ガラス試験管に、ケイソウ土担持酸化チタン粉末、5-HIs水溶液、ベンジルアミン、アセトニトリルを加え密封し、暗箱中に配置したボルテックスシェーカーにセットする。この試験管を振とうさせながら、試験管の側面約3cmの距離から15Wのプラックライト光を30分間照射。この反応液を移動相で希釈しHPLC試料とした。

その結果、5-HIsは酸化チタン存在下、紫外線照射により酸化剤を用いる従来法と同様の蛍光誘導体を生成することを見出した（Fig.10）。

![Fig. 10 Standard chromatograms of fluorescent derivatives of 5-HIs.](image)

Amount: (A), 100 pmol each on column, (B), 50 pmol each on column.
また、微粉末である酸化チタンの代わりに、触媒としてケイソウ土担持酸化チタンを用いたことで、再現性良く誘導体化反応を行うことが可能となった。

本分析法による NAS の検出限界は注入量当たり 16 fmol であり、高感度な測定が可能となった。一方、5-HT と 5-ヒドロキシインドール-3-酢酸（5-HIAA）については、低濃度域でピーク強度の低下が認められ、定量的な分析ができなかった（Fig. 11）。

珪藻土は、ガラスと同じ珪酸質（SiO₂）を主成分としており、5-HT や 5-HIAA などの極性基を持つ 5-Hls は珪藻土表面に物理的に吸着される。従って、低濃度域においてこれらの化合物は、吸着されたまま酸化を受け、それらの一部が分解する、あるいは吸着されたまま反応液中に溶出されなかったものと考察した。特に 5-HIAA については、光照射により生じた正孔との結合により分解が促進される可能性が示唆された。今後、本法の生体成分分析への適用に際しては、物理的吸着の問題を克服するための誘導体化反応条件の変更や、酸化チタンをコートする基材についてのスクリーニングなどが必要である。しかしながら、本法の様に光触媒酸化反応により分析対象物を蛻光誘導体化する方法論は本研究において初めて実施されたものであり、酸化剤を用いる従来法と比較して同程度の感度で分析でき、かつ有害な廃液も出さないことから、環境に優しく実用的な分析法として極めて有用であるという可能性を示すことができた。

4. 光触媒酸化反応を利用した 5-Hls のオンラインプレカラム蛻光誘導体化
HPLC 分析システムの開発と実試料分析への適用（2）

最後に、前項での結果を踏まえ、HPLC に直接接続が可能な光触媒酸化反応カラムを新たに考案・作製し、これを用いる 5-Hls のオンラインでの蛻光誘導体化（フロー法）による HPLC 分析システムを開発した（Fig. 12）。
本システムには、オンライン光触媒酸化により 5-HIs の蛻光誘導体化を進行させるための反応カラムが組み込まれている。本カラムは、酸化チタンを耐圧に固定化した微小ガラスビーズを封入したデフゼルチューブ中に充填したものであり、分析用の HPLC システムに直接接続が可能で、耐圧性、耐久性においても優れていた。本システムにより 5-HIs は酸化剤を添加することなく、トランスイルミネーターによる紫外線照射下、オンラインで高効率かつ定量的にベンジルアミンと反応し、前章では達成できなかった 5-HT 及び 5-HIAA の微量分析が可能となった。本システムによる 5-HIs の検出限界は注入量当たり、それぞれ 360 (5-HT), 300 (5-HIAA), 160 fmol (NAS) であり、この結果は、従来の化学酸化法には及ばなかったが、今後、より高活性な反応カラムの作製やポストカラム法の導入により更なる高感度化が期待できる。また、3 種の 5-Hls の標準溶液 (100 pmol/注入量) を 5 回繰り返し測定したときの変動係数は、それぞれ 6.3 (5-HT), 7.8 (5-HIAA), 6.2 % (NAS) であった。相対標準偏差がいずれも 5 %以上と比較的高値を示したのは、5-Hls 及びその誘導体が、アルカリ溶液中、ガラスビーズ表面への吸着現象により引き起こされたものと考えており、このような吸着を抑えるために、今後、基材の変更、コーディング後のガラスビーズ表面の処理、誘導体化反応をポストカラム反応へと変更するなどの手法が考えられる。

さらに、本システムの実験分析への適用として、ヒト尿中 5-HIAA の定量を実施したところ、30 分以内に单一のピークとして分離・検出された (Fig. 13)。
本システムを用い、標準添加法により算出した健常人6例の尿中5-HIAAの定量値をTable 1に示す。

Table 1 Urinary excretion of 5-HIAA from healthy volunteers.

<table>
<thead>
<tr>
<th>Healthy subject</th>
<th>Age</th>
<th>Sex</th>
<th>5-HIAA (μmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>Male</td>
<td>18.6</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>Male</td>
<td>25.2</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>Male</td>
<td>46.8</td>
</tr>
<tr>
<td>4</td>
<td>31</td>
<td>Male</td>
<td>15.2</td>
</tr>
<tr>
<td>5</td>
<td>49</td>
<td>Male</td>
<td>12.3</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>Female</td>
<td>11.4</td>
</tr>
</tbody>
</table>

Mean 21.6
Standard deviation 13.3
Reported values 2 - 50

過去に報告されている健常人中尿中5-HIAA濃度は、2 - 50 μmol/Lの範囲13-15）であり、今回の結果はこれとよく一致した。また、同一の尿試料を5回繰り返し測定したときの5-HIAAの測定値の変動係数は、2.4 - 10.3%であった。

本法は比較的単純な前処理操作のみで、5-HIAAのピークのみを選択的にクロマトグラム上に示すことができたことから、カルチノイド症候群、ダンピング症候群などの診断、治療経過のモニタリングだけでなく、これらの病態機構の解明、基礎研究などにおいても大いに役立つと考える。
【結論】
以上述べたように、本研究ではベンジルアミンを誘導体化試薬とする5-Hlsの高感度・高選択的蛍光検出法を礎として、新たに開発した4種の新規分析システムについて報告した。開発した分析システムは、いずれも従来法の問題点を克服した簡便かつ実用的な分析法であり、製剤片、生体成分中の5-MIsおよび5-Hlsの分析に極めて有用であることを実証することができた。今後、これらのシステムが、実際の医療現場や、生体機能解明研究などの分野において、広く社会貢献できるものと考える。

【謝辞】
本研究は福岡大学薬学部薬品分析学教室　山口政俊　教授、能田　均　教授の終始変わらざる暖かい御指導と御鞭撻の下に行われました。謹んで感謝の意を表します。また、本研究をまとめる際、ご多忙の中、懇切丁寧な御指導を賜りました福岡大学薬学部薬剤学教室　加留部善晴　教授ならびに医薬品情報学教室　原　周司　助教授に深く感謝の意を表します。

本研究を遂行するにあたり、御協力頂きました福岡大学薬学部薬品分析学教室　石丸康作　中野正喜　青木　孝　中島佳彦　有坂雅恵　下澤美和子の諸氏に深く感謝いたします。

本研究ならびに論文作成に際し、貴重な御助言と御協力を賜りました同教室助手吉田秀幸　博士に深謝いたします。

本研究に関し、酸化チタンの御提供並びに貴重な御助言を賜りました福岡大学工学部化学工学科　中野勝之　教授、東（大渕）英子　博士、安本和博　氏に深く感謝致します。

最後に、数々の討論にご参加いただきました福岡大学薬学部薬品分析学教室の大学院生ならびに特別実習生の皆様に感謝いたします。
【参考文献】