テザー衛星システムの非線形制御

（第1報，ρ次近似線形化法による制御器設計）

岩村誠人**

Nonlinear Control of Tethered Satellite Systems
(1st Report, Controller Design Using ρ-th Order Approximate Linearization)

Makoto IWAMURA

This paper studies the control problems of deployment and retrieval of a tethered satellite system. The ρ-th order approximate linearization is applied to the control problem and a nonlinear controller for the system is designed. Results of numerical simulation show that the control performance of the proposed nonlinear controller is better than that of linear controller without nonlinear compensation.

Key Words：Tethered Satellite Systems, Nonlinear Control, Approximate Linearization, Coordinate Transformation

1. はじめに

テザー衛星システムとは，人工衛星やスペースシャトル等の宇宙飛行体や宇宙ステーション等の宇宙構造物をテザーと言われる紐で連結したシステムの総称であり，近年の宇宙開発において活躍が期待されている宇宙システムの一つである．本論文では，Fig.1に示すようなスペースシャトルと小型の副衛星を1本のテザーで連結した最も単純なテザー衛星システムを対象とし，テザーを延伸/回収する場合の副衛星の制御問題について検討する．

この問題に関して，Bainumら(1)は系を平衡点近傍で線形近似し，最適リギュレータを設計して軌道平面内運動の制御を行っている．しかし，テザー衛星システムは非線形性が強くためこの方法によって安定化できる領域は狭い．一方，Fujiiら(2)はLyapunovの直接法に基づくMission Function Controlと呼ばれる制御手法を提案している．この手法は，安定性を理論的に保証できる点が優れているが，最適リギュレータのように制御性能を指定した制御系設計をすることは一般に難しい．

そこで，本論文では非線形制御理論（微分幾何学的アプローチ）(3)を用いて，より高次項まで線形化したモデルを導出し，最適リギュレータにより安定化できる領域を拡大することを考える．対象とするテザー衛星システムは厳密な線形化の条件を満たさないためρ次近似線形化法(4)の適用を考える．数値シミュレーションにより，安定化可能領域が拡大することを示す．

* 平成24年5月31日受付
** 機械工学科

2. テザー衛星システム

本論文で対象とするテザー衛星システムのモデルをFig.1に示す．ここで，PおよびCはそれぞれ地球とシャトルの質量中心，θはテザー長さ，ρはテザー振れ角，mは副衛星の質量である．問題の取り扱いを容易にするために，(a)副衛星の質量がシャトルの質量に比べて十分小さくCは常に軌道上に存在する，(b)テザーは質量のない剛体とする，(c)系には地球の重力以外の外力は働かず，Cは常に高度Re，角速度Ωで周回する，(d)テザーには張力T以外の力は作用せず，エネルギーの散逸もな
い、という仮定を導入すると系の軌道平面内の運動方程式は次式のようになる。

\[i - i \dot{\theta}^2 - 2I \dot{\theta} - 3I \cos^2 \theta = - \ddot{T} \]
\[i \ddot{\theta} + 2I (\dot{\theta} + 1) + 3I \sin \theta \cos \theta = 0 \]

ただし、(i) は \(\tau\) の微分、\(\dot{\theta}\) は \(\omega\)、\(T\) は \(T/mS\) である。上式より、\(i = L_\theta\) (任意)，\(\dot{\theta} = 0\)、\(T = 3i\) が安定平圧点となる。本論文では、副衛星のある初期状態 \((i, \dot{\theta}, \theta) = (\dot{\theta}_0, \theta_0, \theta_0)\) から目標とする平衡点 \((i_d, 0, 0, 0)\) に安定化する制御問題について検討する。

ここでは、簡単のために(2)式の微分方程式拘束条件を、系の運動を支配する方程式とみなし、(1)式は運動が決定された場合にその運動を力学的に矛盾なく生じさせるテザー張力 \(\ddot{T}\) を計算する補足的な式と考える。(2)式を変形すると次の関係が得られる。

\[\dot{\theta} = -\frac{3}{i} \sin \theta - \frac{2(\dot{\theta} + 1)}{i} \]

通常、状態変数は \(x = (x_1, x_2, x_3)^T = (i, \theta, \dot{\theta})^T\) のように定義されることが多いが、本論文では \(\rho\) 次近似線形化法の適用を可能とするために \(x = (x_1, x_2, x_3)^T = (\ln(i/i_0), \theta, \dot{\theta})^T\) を選ぶ。また、制御入力として \(u = \frac{1}{i}\) と定義することにすると、方程式方程式は次式のようになる。

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix} = \begin{pmatrix}
 0 & 1 & 0 \\
 -\frac{3}{i} \sin 2x_2 & 0 & -2(x_3 + 1)
\end{pmatrix} \begin{pmatrix}
 u \\
\end{pmatrix}
\]

\[= f(x) + g(x)u \]

3. 非線形制御

非線形系の制御に対しては、系を平衡点の近傍で線形近似し、線形制御理論を適用する手法が主流となっている。しかしながら、この手法は、系の動作範囲が広い場合や系の非線形性が強い場合などには不十分であることが多い。そこで、座標変換とフィードバックによって状態方程式を厳密に線形化する手法が提案されている。しかし、厳密な線形化の条件は非常に厳しいため適用できる対象は限られている。そこで、局所線形化と厳密な線形化の中間的な手法がいくつか提案されている。本論文では、状態方程式の制御入力としてテザー衛星システムも厳密な線形化の条件を満たさないため、条件を緩和した手法の一つである \(\rho\) 次近似線形化法の適用を考慮する。

3.1 \(\rho\) 次近似線形化法 \(\rho\) 次近似線形化法は、状態方程式を座標変換とフィードバックによってテイラー展開の \(\rho\) 次まで線形化する方法である。 \(n\) 次状態入力の系

\[x = f(x) + g(x)u \]

は、次の2つの条件

(i) \(\{ad_{ij}^g, ad_{ij}^g, \ldots, ad_{ij}^{-1}g\}(x)\) が線形独立。

(ii) \(\{ad_{ij}^g, ad_{ij}^g, \ldots, ad_{ij}^{-2}g\}(x)\) が \(\rho\) 次インポリューティブ。

を満たすと \(\rho\) 次近似線形化可能である。ただし、\(ad_{ij}^g(x)\) は次のよう定義されるベクトル場である。

\[ad_{ij}^g(x) = g(x), ad_{ij}^g(x) = [f, ad_{ij}^{-1}]\]

ここで、\([f, g]\) は次のように定義されるリーマンである。

\[[f, g] = \frac{\partial g}{\partial x} f(x) - \frac{\partial f}{\partial x} g(x)\]

また、ベクトル場の集合 \(\{f_1(x), \ldots, f_n(x)\} \) が原点において \(\rho\) 次インポリューティブであるとは、次式を満たすスカラー関数 \(\delta_k(x)\) が存在することである。

\[[f_1, f_2]\] = \sum_{k=1}^{n} \delta_k(x) f_k(x) + O^p(x)\]

ここで、\(O^p(x)\) は \(x\) に関する \(\rho\) 次以上の項である。定理の条件が満たされると、

\[L_{ad_{ij}^{g}} (\phi(x)) = O^{n+1}(x) \quad i = 0, 1, \ldots, n-2 \]

\[L_{ad_{ij}^{-1}g} (\phi(x)) \neq 0 \]

を満足するスカラー関数 \(\phi(x)\) が必ず存在する。ただし、リー微分は次のよう定義される。

\[L_f \phi(x) = \frac{\partial \phi}{\partial x} f(x) \]

\[L_f^j \phi(x) = L_f \phi(x) \]

\[L_f^j \phi(x) = L_f (L_f^{j-1} \phi(x)) \]

この \(\phi(x)\) を用いてシステムを \(\rho\) 次まで線形化する座標変換とフィードバックの一つは

\[\xi = P(x) \begin{pmatrix}
 \phi(x) \\
 L_f \phi(x) \\
 L_f^2 \phi(x) \\
 \vdots \\
 L_f^{n-1} \phi(x)
\end{pmatrix} \]

\[u = \alpha(x) + \beta(v) = -L_f^{n-1} \phi(x) + \frac{1}{L_f L_f^{n-1} \phi(x)} \]

で与えられる。さらに、これを用いて状態方程式は

\[\dot{\xi} = A_\xi + Bv + O^{n+1}(x, v) \]

なる \(\rho\) 次線形状態方程式に変換される。

3.2 テザー衛星システムへの適用 ここでは、\(\rho\) 次近似線形化法の考え方に基づき、テザー衛星システムの \(n\) 高次まで線形化したモデルを導出し、一つの非線形コントローラ設計することを試みる。

(2)
(定理の条件のチェック)
(3) 式の状態方程式の \(ad_j^g(x) \) を計算すれば
\[
\begin{align*}
ad_j^g(x) &= g(x) = \begin{pmatrix} 0 \\ -2(x_3 + 1) \end{pmatrix} \\
af_j^g(x) &= \begin{pmatrix} 2(x_3 + 1) \\ 3 \sin 2x_2 \end{pmatrix} \\
af_j^g(x) &= \begin{pmatrix} -6 \sin 2x_2 \\ 6 \cos 2x_2 (2x_3 + 1) \end{pmatrix}
\end{align*}
\]
となる。したがって,
\[
\det(ad_j^g(x), af_j^g(x), af_j^g(x)) = 0
\]
となるので定理の条件 (i) を満たす。また,
\[
\det([ad_j^g(x), af_j^g(x), af_j^g(x)]) = 24 \sin 2x_2 (x_3 + 1)
\]
となるので, \(ad_j^g(x), af_j^g(x) \) は 1 次インポリューティブである。したがって, その方程式は全体的に 1 次近似定形可能であることがわかる。さらに, 2 章で定義した状態方程式 (3) の特殊な構造が起因して, その方程式は 2 次近似定形可能であることが以下に示される。

(\(\phi(x) \) の決定)
状態方程式を \(p \) 次近似状態方程式に変換するとき, 状態方程式とフィードバックを求めるために (5), (6) 式を満たす関数 \(\phi(x) \) を求める。 \(p = 1 \) より, \(\phi(x) \) は \(x \) について 2 次の多項式と仮定する。
\[
\phi(x) = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_1 x_1^2 + a_2 x_2 x_3 + a_1 x_1 x_3 + a_2 x_2^2 + a_3 x_3^2 + a_4 x_1 x_2 + a_5 x_1 x_3 + a_6 x_2 x_3 + a_7 x_3^2
\]
福岡大学工学集報 第89号（平成24年9月）

\[
L_2^3 \phi(x) = L_f[L_2^2 \phi(x)] = L_f[-6x_3]
\]
\[
= \left(\begin{array}{c}
\frac{d}{dx}(-6x_3)
\end{array} \right) f(x)
\]
\[
= \left(\begin{array}{ccc}
0 & 0 & -6
\end{array} \right)
\]
\[
= \left(\begin{array}{ccc}
x_3 & 0 & 0
\end{array} \right)
\]
\[
= 18x_2
\]
\[
L_gL_2^2 \phi(x) = L_g[L_2^2 \phi(x)] = L_g[-6x_3]
\]
\[
= \left(\begin{array}{c}
\frac{d}{dx}(-6x_3)
\end{array} \right) g(x)
\]
\[
= \left(\begin{array}{ccc}
0 & 0 & -6
\end{array} \right)
\]
\[
= \left(\begin{array}{ccc}
x_3 & 0 & 0
\end{array} \right)
\]
\[
= 12(x_3+1)
\]

これらの用いれば状態方程式を \(\rho \) 次線形化する座標変換は (7) 式より、次のようにする。

\[
\xi = \left(\begin{array}{c}
\xi_1
\xi_2
\xi_3
\end{array} \right) = \left(\begin{array}{c}
\phi(x)
L_f \phi(x)
L_2^2 \phi(x)
\end{array} \right)
\]
\[
= \left(\begin{array}{ccc}
4x_1 + 2x_3 - 3x_2^2 - x_3^2
-6x_3
-6x_3
\end{array} \right)
\]

また、フィードバックは (8) 式より、次のようにする。

\[
u = \frac{L_2^3 \phi(x)}{L_gL_2^2 \phi(x)} + \frac{1}{L_gL_2^2 \phi(x)}\nu
\]
\[
= -\frac{18x_2}{12(x_3+1)} + \frac{1}{12(x_3+1)}\nu
\]

(状態方程式の \(\rho \) 次近似線形化)

求めた座標変換とフィードバックを用いて状態方程式を \(\rho \) 次近似線形化する。 (3) 式より状態方程式は

\[
\dot{x}_1 = u
\]
\[
\dot{x}_2 = x_3
\]
\[
\dot{x}_3 = -3x_2 - 2(x_3+1)u + O^3(x,u)
\]

と表せること、および、座標の逆変換が

\[
\left(\begin{array}{c}
x_1
x_2
x_3
\end{array} \right) = \left(\begin{array}{ccc}
\xi_1 & \xi_2 & \xi_3
1/4 & \frac{1}{12} & \frac{1}{144}
1/2 & \frac{1}{8} & \frac{1}{3}
-1/8 & \frac{1}{4} & \frac{1}{2}
\end{array} \right)
\]

となるので、 \(x \) と \(u \) の 3 次以上の項 \(O^3(x,u) \) は座標変換とフィードバックを行うと \(\xi \) と \(\nu \) の 3 次以上の項 \(O^3(\xi,\nu) \) になることに注意すると

\[
\dot{\xi}_1 = 4x_1 + 2x_3 - 6x_2x_2 - 2x_3x_3
\]
\[
= -6x_2 + O^3(x,u)
\]
\[
\dot{\xi}_2 = -6x_2
\]
\[
= -x_3
\]
\[
\dot{\xi}_3 = -6x_2
\]
\[
= 18x_2 + 12(x_3+1)u + O^3(x,u)
\]
\[
= \nu + O^3(\xi,\nu)
\]

となり、状態方程式で表せば、次のようにする。

\[
\left(\begin{array}{c}
\xi_1
\xi_2
\xi_3
\end{array} \right) = \left(\begin{array}{ccc}
0 & 1 & 0
0 & 0 & 1
\end{array} \right) \left(\begin{array}{c}
\xi_1
\xi_2
\xi_3
\end{array} \right) + \left(\begin{array}{c}
0
0
1
\end{array} \right) \nu + O^3(\xi,\nu)
\]

上式より、デーティー展開の 2 次項まで線形化されていることが確認できる。この線形化された状態方程式を安定化するために状態フィードバック

\[
v = (k_1, k_2, k_3) \left(\begin{array}{c}
\xi_1
\xi_2
\xi_3
\end{array} \right) = k_1\xi_1 + k_2\xi_2 + k_3\xi_3
\]

を用いれば、もとの状態方程式に対するフィードバック (入力 \(u \)) は (11) 式より、次のようになる。

\[
u = -\frac{18x_2}{12(x_3+1)} + \frac{1}{12(x_3+1)}(k_1\xi_1 + k_2\xi_2 + k_3\xi_3)
\]
\[
= -\frac{18x_2}{12(x_3+1)} + \frac{1}{12(x_3+1)} \times \{k_1(4x_1 + 2x_3 - 3x_2^2 - x_3^2) - 6k_2x_2 - 6k_3x_3\}
\]

4. 数値シミュレーション

ここでは、原点回りで線形近似したシステムに基づいて設計した線形コントローラ

\[
u = (k_1, k_2, k_3) \left(\begin{array}{c}
x_1
x_2
x_3
\end{array} \right) = k_1x_1 + k_2x_2 + k_3x_3
\]

と \(\rho \) 次近似線形化に基づいて設計した非線形コントローラ (式 (13)) の性能の比較を行う。初期状態と目標状態を

\[
\left(\begin{array}{c}
l(0)
l(0)
\theta(0)
\theta(0)
\end{array} \right) = \left(\begin{array}{c}
l(0) km
l(0) km
\theta(t_f)
\theta(t_f)
\end{array} \right) = \left(\begin{array}{c}
1 km
0
0
0
\end{array} \right)
\]

と設定して、初期デーティー長さ \(l_0 \) を徐々に伸ばしていき安定化可能な範囲を調べる。フィードバックゲイン \(k_1, k_2, k_3 \) はいずれも \(Q = diag(1, 1, 1), R = 1 \) として最適レギュレータによって設計するものとする。

初期デーティー長さ \(l_0 \) を 2km から 1km ずつ増加させていったところ、\(l_0 = 4km \) まではいずれのコントローラも安定

(4)
テザー衛星システムの非線形制御（岩村）

5. おわりに

本論文では、p 次近似線形化法を用いてテザー衛星システムの一つの非線形コントローラを設計した。数値シミュレーションにより、従来の線形コントローラよりも安定化可能な領域を拡大することができることを確認した。次報では、異なる考え方に基づく非線形制御手法である疑似線形化法の適用を試み、本報で設計したコントローラとの詳細な比較を行う予定である。

Fig. 2 In-plane motion of the system for retrieval phase

Fig. 3 Variation of tether length during retrieval

Fig. 4 Variation of in-plane rotation during retrieval

Fig. 5 Variation of tension during retrieval

謝辞

本研究をはじめ、長年にわたり、ご指導ご鞭撻を賜りました福岡大学工学部の尾崎弘明教授に心よりお礼を申し上げます。

文献

