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Abstract

An admissible map for classifying spaces can be regarded as a matrix. We
discuss the diagonalizability of such matrices as well as the Jordan canonical
forms. Sometimes a high—dimensional behavior characterizes the induced
homomorphism of the cohomology. We will ask if such a thing happens in
our case. A relationship between the diagonalizability of admissible maps
and the reducibility of classifying spaces is also discussed for unitary groups.
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We first recall admissible maps for the rational cohomology, [1]. As explained
in [8], it is well-known that, for a connected compact Lie group G, the ra-
tional cohomology H*(BG,Q) is isomorphic to the ring of invariants under
the action of the Weyl group W(G). Consequently, for connected compact
Lie groups G and K with maximal tori Ty and Tk respectively, we see
H*(BG;Q) = H*(BTg; Q)W) and H*(BK;Q) = H*(BTk; Q)W) For
any map f: BG— BK we have the commutative diagram:

H*(BTy:Q) —2 H*(BTg; Q)

| T

H*(BK;Q) o H*(BG;Q)

Here ¢ = ¢y is admissible ; namely for any w € W(G) we can find v’ € W(K)
such that w¢ = ¢uw’.

Recall next that H*(BT"™; Q) = Ql[t1,to, -+ ,t,] is a polynomial ring in n vari-
ables of degree 2. So the admissible map ¢ can be regarded as a rank(G) x
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rank(K) matrix, since the ring homomorphism is determined by a linear map
on the vector space H?(BTy;Q). For instance, the admissible self-maps for
H*(BU(n);F,) & H*(BT™;F,)*" are as follows:

(91@.2 %) tolh

o=\ . Jor ..

a/l 0/2 oo an b b .”. a

Notice, [2], that the rational cohomology can be replaced by the mod p cohomol-
ogy when p is large. We note that H*(BG;TF,) is isomorphic to H*(BTg;F,)"V ()
, for instance, if p does not divide the order of W (G). Any map from H*(BT";F))

to H*(BT™;F),) over the Steenrod algebra A, can be determined by a matrix.
Conversely, any matrix gives such an A,—map.

In §1, for an admissible map ¢ : H*(BT™;F,)— H*(BT"™;F,), we consider the
case that the n x n matrix ¢o : H*(BT™; F,)—H?*(BT";F,) is diagonalizable.
We will show that, in this case, any matrix ¢or, : H?*(BT™; F,)— H?*(BT™; F,,)
is also diagonalizable, and that if ¢9 is invertible, so is ¢9; as a consequence. In
82, we consider the case that ¢- is not diagonalizable. Even though ¢, is in a
Jordan canonical form, ¢o; need not be so. Therefore we will find an invertible
matrix Py such that the conjugate PQ_qukaPQk is a Jordan canonical form. The
authors announced some results related to this work at regional meetings of the
Japan Math. Soc., [11], [6] and [7]. A high—dimensional behavior is discussed in
§3. We consider a converse to Lemma 1.1 and see that it doesn’t seem to be the
case in a narrow sense. Finally in §4, the diagonalizability of admissible maps
and the reducibility of classifying spaces are considered. It turns out that, for
unitary groups, both phenomena happen under the same condition.

1 Diagonalizable Matrices

An admissible map ¢ : H*(BT™;F,)—H*(BT™;F,) can be regarded as a

square matrix on each H?*(BT™;F,). Let A denote the matrix presentation

of ¢o, and let prp(A) denote the matrix presentation of ¢or. For m = 2, if
0 b a? 2ab b?

A= ( d ), then po(A) = ac ad+bc bd |. Because if ¢o(t1) =
¢ c? 2cd  d?

at] + btg, then ¢4(t3) = a®t? + 2abtity + b*t3 and so on. We note that if the

matrix A is diagonal, so is pi(A) for all k£ > 1.
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Lemma 1.1 If the matrix presentation of ¢ on H*(BT™;F,) is diagonaliz-
able, so is that of ¢op, for all k > 1.

Proof For the matrix presentation A of ¢2, we see the following:

pr(PAP™) = pr(P)pr(A)pr(P~1).

H*(BT™F,) —*— H*(BT™TF,)

P‘lT lp
H*(BT™";F,) ——— H*(BT™F
( ) oo HY p)

If A is diagonalizable, there is an invertible matrix P such that PAP~! is a
diagonal matrix. Thus p,(PAP~!) is a diagonal matrix. O

There are admissible maps that are not diagonalizable. For instance, let A =

< ? :; ) and ¢9 = p1(A). For the exceptional Lie group Ga, the map ¢ is

admissible, [8, Proposition 2.

H*(BT%Q) —*— H*(BT%Q)

T T

H*(BG2;Q) —— H*(BG3;Q)
Since A% = ( g g
¢ : H*(BT? F3)— H*(BT?;F3). If ¢ were diagonalizable, then PAP™! =
( Av 0 for an invertible matrix P. Note that A% = 0 implies (PAP™!)? =

0 Ao
0. This would mean that Ay = Ao = 0. This is a contradiction.

) , we see that ¢?> =0 at p = 3. So we consider the map

Concerning the determinants, one can show the following:

Lemma 1.2 det ¢ = (det ¢o) "2 for all k > 1.




2 Jordan canonical form

Next we consider the maps ¢ : H*(BT?%;F,)—H*(BT?F,) when ¢, is not

diagonalizable. Particularly we will treat the case ¢ = (())\ i\) , which means
that qbg(tl) = A1 + to, ¢2(t2) = Aty for H*(BTz;Fp) = Fp[tl,tg].
A2 2\ 1 2CoA?  2CIA ()
For instance, we see that ¢4 = | 0 AN = 0 1C1A?2 1Cp\ ,
0 0 A 0 0 oCo)?
where nC} denotes the binomial coefficient, as usual. We note that P, 1¢4P4 =
A1 0 1 5 0
0 A 1| ifwetake L= {0 3 0
0 0 A2 0 0 55

Theorem 1 For the two square matrices of size n + 1

A1 L. 0
A1 0 \
0
J2n -
0
S
\0 ... A
(nCnAn nCrg A1 . nColl
n—1Cn—1 A" 1CpoX" 1 n—1Cp\?
and (Z)Qn _ n—QCn—2)\ 7
1C1 A" 1C()>\n_1
\ 0 2CoA" ]

PQ_nl(bgnPQn = Jop, holds if Py, is the following upper triangular matrix:
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Py, =
( 1<g<n—2 g=n—1 g=n \
\n—i : \nt+p—1
z; n—p—i—lcz)\ (p +1,q+ 1) z; n—p—i—lcz)\ nIxn(n=1)  niyn(n-1) 0
1= =
AL
ATAGETY
An—1
nIAn(n—1) ?
\ 0 0 0 W)

Here (p,q) means the (p,q)—entry of Ps,. The left column means the type of
the first n — 2 columns so that each entry varies upon q for 1 < g <n—2. For
instance, Py is given as follows:

1202020 24015 150A10 30\ 10

120020 120320 12030 120020 12030 0 \
0 2416 3611 14)\8 1\ 0
120020 120020 120220  120)20
0 0 612 6\ 1D 0
Py = 120020 120)20  120)20
O O O 2\ 1D O
120720 1210/\ 20
0 0 0 0 9020 0
1
\ 0 0 0 0 (| J——

Proof It is enough to show ¢o, Po,, = Py Jo,. We will determine the columns
of Ps, in the reversed order, since we need the k+ 1-st column to find the k-th
column for £k =1,2,--- ,n.

First consider the n+ 1-st column. Multiplying both sides by n!\"("~1) we will
show the following:

0 0
bon O =\ [ g
1 1
—— A"
q:np+1 N——
qg=n+1

To do so, we compute both sides as follows:



0 A0 N
. AL Al
| | =] . | and O s I I
1 A N A

Consequently we see that the both n + 1-st columns are the same.

Next consider the n-th column. Again multiplying by n!\""1 we will show
the following:

0
A0 : \

¢2n )\nz—l = n!An(nil)PZn (1)

0 A"
— \ 0/

q=n

—_——

q=n

To do so once again, we compute both sides as follows:

nCn)\n)\O +n C’n—l)\n_l)\1 + tt +n Cl)\l)\n_l

)\O
n—lcn—l/\nAl+n—1Cn—2)\n71>\2+"'+n—101)\2>\"71
¢2n n‘ 1 = .
A" N
0 101An>\n 1
0

DI
=1
n—1

X Prte;

=1

' 1
)\2n—1 Z Ne?

1=1

0
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n—1

=1

n—2

=1

0 + )\nflAn
0

n

A" G

=1
n—1

e Prtes

=1

1

A2t Z 104

=1

0

WCOA™ + 20N

Z nflciAn—i_l + )\1>\n

Next consider the n — 1-st column. Again multiplying by n!\"("~1 we will
show the following:

Can

g=n—1

(gn_pﬂci)\mpﬂ\ ( () \
n—p ' = n!A”(”_l)Pgn (1)
> npp G An
=1 0

0

.0 X

~~ q=n—

To do so, we compute both sides as follows:

Pan

n—p

Z n7p+lcikn+p+l
i=1

n—p
Z n_p+1ci>\n+17+1
1=1

0

0



n!)\”(”_l)Pzn 1

\ 0 )

S n-2 n—3
(nCnA™ 32 nCA™) + (nCp i A" 301G 4+ (0 G 2 A" T2 3T 0 )
= =1 i=1
n—(n—1)

cee 4 (nCQ,\2 Z ZC’Z-ATL+(7172)) + (ncl>\1 L) + (nc())\O -0)
i=1

n—2 n—3 n—4
1 —1 2 —2 3
(n—1Cn—1 A > 1 G 4 (1O oA ST 0GR 4 (1 Cns A T2 Y 3O TR
i=1 =1 1=1
n—(n—1)
e (m1C2X% YT 20T 4 (,_1C1A - 0) + (n—1CoA - 0)
i=1
n—(n—2) nf(n;l)

(3C3A™ Z 301‘/\2”*3)_’_(302)\”71 Z zCi/\2"72)+(301>\”*2 '0)-&-(36’0)\”*3.0)
—~ —
' n—(n—1) ‘
(202N 3T 2GR 4+ CIAT T 0) + (2CoA" T2 - 0)
1=1
(1C1A™ - 0) + (1CoA™ ™1 - 0)
(0CoA™ - 0)

0
\ 0
n—1 n—1
Saowitsin Ty )
=1 i=1

n-2 n—2
{Z n 1G24 d,n — 1)} + {Z o1 CATHI AT
=1 i=1

2 2
{Z 3Ci)\"_i(n —24+in—-1)}+ {Z 3C¢>\2"_3})\”
i=1 P

1
0+ {) 2G> 2pA"
i—1

0
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n—2 n—3
{nCA T QiGN 4 {nCoA 2 (D a2 GNP 4
i=1 i=1
1 n—1

{nCrn2X(D 20N ) + {nCoa X! 0} + {D WA JA"
i=1 1=1
n—3 n—4

{n G T O T 2G4 {1 Co X 2 (D s G

i=1 =1
1

n—2
{n-1Cn-sX* (3 2CN" )+ {no1Cad® - 0} + D noa G N

=1 =1

1 2
{3CIA" (D 2CNTT 4+ (30N T2 0+ {D aCiXT TN
=1 =1

1
{Z 2Ci>\2n—2})\n
i=1

0
0

Consequently we see that the both n — 1-st columns are the same, since

nCa = nCn—a .

Next we consider the n — 2-nd column, and show the following:

n—1 ) 0
> nCA T (L +in = 1) -
=1 :
n—2 ) 0
¢2n Z n_lciAn_Z(2 +1,n — 1) = n!)\n(n_l)P2n 1
=1 A"
0
0 0
0 0
N -~ / N——
g=n—2 qg=n—2

To do so, we compute the both sides as follows. At the last step, for 2 < j <
n — 2, the entries (j,n — 2) will be replaced by sums of (j +i,n —1)'s.

n—1 \
( ZnCN—i(l +i,n—1)

i=1
n—2

b D aCXTH2 4 i — 1)

1=1




n—1 n—2
{nCnA™ > nCA" (1 +in — D} 4+ {nCra A1) n 1 CA (24 d,n— 1)} + -
1=1 ) | 1=1
e {nC3A3 D 3CA"  (n—2+i,m—1)}+0+0+0
1=1
n—2 ) n—3 )
{n1Cn 1A Y 1CN"T 24 4,n — D} 4 {n1Cn oA"Y G B 4 dn — 1)} 4
=1 ) =1
---+{n—103)\42301>\"_i(n—2+i,n— 1)} +0+0+0
=1
3 ) . 2 )
{4CaA™ D " 4CA T (n =3 +i,m — 1)} + {aCsA" 1Y 3CiX" T (n— 2 414,n — 1)}
=1 i=1
+04+0+0
2
{3C3A" > 3C A" (n—2+14i,n—1)} +0+0+0
=1
0
0
0
0
0
nIAP( =D Py, 1
)\n
0
0
0
n—1 ) n—1 .
O nCA" T 1+ i =2} +{D nCiA* T (1 44,n — 1)IA"
s i |
D n1CATI2+in =2} {D a1 CATTH2+ i — 1IN
=1 =1

3 3
D 4CA" T =3 +4,n—2)} +{D _aCiA" T (n—341d,n — 1)}A"

=1 =1
2
0+{> 3CiA" ‘(n—2+in—1)}A\"
=1
0
0

0
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{nCiIA" T H2m = 2} + {nC2A" 2B, n = 2)} 4 - + {nCn_3X?(n — 2,n — 2)}
n—1
FO+0+{D  nCA" T (A +i,n—1)IA"
1=1

{n—1C1IA" " B, n = 2)} + {n—1C2A" 24, n = 2D} + -+ {n_1Cp_aX(n — 2,n — 2)}
n—2

FO+0+{> no1CA" T2+ 4, n — DA
=1

3 .
{4C1IA" T (n = 2,n — 2} + 04+ 0+ {D_ 4G A" (n — 3 +4,n — 1)IA"
=1
2

04+0+{> 3CA" "(n—2+in—1)\"
i=1

0
0
0

n—2 n—3
(nC1IAMTE ST 1AM T 2 4 i n = D 4 {nC2A T2 Y G T B i — D}
i=1 i=1
n—1 .
ST RCAT T @+ i,n — DA™
i=1 i=1
n—3 ' . n—z4 X
{r—1CIA" ™ 3T 2O T B i n = DY+ {n—1C2A" T2 Y 3O T (A i — D}
=1 =1

2
o {nCn3A3 Y 3CAT TP (n =244, n — D} + 0+ 0+ {

2 n—2
ot {ne1Cn—adt D 3G T (=244, n = D} 040+ { D> n 1CiAT T2+, n— DIA"

= =1 i=1

2 3
{4CIA" Y 3CAT T (n =244, n — 1D} + 0+ 0+ {D_ 4C A" "(n—3+i,n— 1)IA"
i—1 =1
T 9 . 1
0+0+{> 3CA" *(n—2+44,n—1)}A"
i=1
0
0

0
Consequently we see that the both are the same. And a similar argument goes
on for each step. One can complete the proof.

3 High—-dimennsional behavior

It is well-known that classifying spaces BG have rigid structure so that there
are relatively few maps between them. Sometimes the maps are controlled by
mod p cohomology. The fusion version of the rigidity of BG can be found in
recent work of [4] and [3].

A result of Mislin [10] states that for a homomorphsim p : G— K, if there is a
non-negative integer n such that (Bp)* : H/(BK;Z)—H’(BG;Z) is an iso-
morphism for all j > n, then (Bp)* is an isomorphism for all j > 0. This means
that a high—dimensional behavior characterizes the induced homomorphsim of



the cohomology. Here we ask if ¢o; : H (BT?;F,)—H% (BT?%F,) is diago-
nalizable, is ¢y(;_1) also diagonalizable 7 This is a converse to Lemma 1.1. We
will see that the answer turns out to be negative.

First note that if A € GL(n,F,) is diagonalizable, then AP~! must be the
identity matrix. Thus any invertible matrix whose order exceeds p — 1 can
not be diagonalizable. Here we consider anti-diagonal matrices. We denote

an n x n anti-diagonal matrix by anti—d(a1, s, - ,ay). For instance we see
( o(z) 062 ) = anti—d(aj,a9). If an admissible map ¢o = anti—d(c, b) =
1

( 2 8 )’ then ¢g, = anti—d(c", " 1p, ... ,b™). The product of two anti—

diagonal matrices is a diagonal matrix. And we denote an n x n diagonal

matrix by d(51, 52, ,0Bn) so that ( 501 ﬁO2 ) = d(f1,82). Suppose B =

anti—d(ay, ag, -+ ,ay). Then B? = d(anay, an_100, -+, a10y).

The unit group of F, is isomorphic to the cyclic group Z/(p — 1). Let ¢ be
a generator of Z/(p — 1). If ¢o = anti—d(¢, 1), then ¢3 = d(¢,¢). Hence the
order of ¢9 is 2(p — 1). This means that ¢9 is not diagonalizable.

Proposition 3.1 Suppose ¢o = anti—d((, 1). Then we have the following:

(1) ¢4 is diagonalizable.
(2) If p—1 is a power of 2, then ¢4,—o is not diagonalizable for all n > 1.

1 0 1
Proof (1) First wenote that A = ¢4 = anti—d(¢?,¢(,1). fP=| 0 1 0 |,
¢ 0 —¢
then P~TAP = d(¢, ¢, —C).
(2) Next we note that ¢3 = d(¢™,¢(™,---,(™), and hence ¢3, , =

d(¢?=1, ¢t ... ¢?"=1). Since p—1 is a power of 2, the odd number 2n— 1
is prime to p — 1. Consequently the order of (?"~! is p— 1 so that the order of
Gan—2 is 2(p — 1). Therefore ¢4,_2 can not be diagonalizable for all n > 1 O

When p = 3 and ¢ = anti—d(—1, 1), we see that ¢4, = anti—d(1,—1,---,—1,1)
is a square matrix of size 2n 4 1. It is easy to show that each ¢4, is diagonal-
izable.
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4 The diagonalizability of admissible maps and the
reducibility of classifying spaces

We consider if the admissible self-maps for H*(BU (n);F,) & H*(BT™;F,)*"
are diagonalizable at p:

a b b
b

¢ = .
b b a

Proposition 4.1 The above n x n matrix ¢ with b # 0 is diagonalizable at
p if and only if n is not divisible by p.

Proof Let P =

N T

Since det P = n, this matrix P is invertible if n is not divisible by p. One can
see that P~1¢P is the diagonal matrix d(a—b,--- ,a—b,a+ (n — 1)b).

Conversely, assume that n is divisible by p. If ¢ was diagonalizable, its conju-
gate would be the diagonal matrix d(a—b,--- ,a—b,a+ (n—1)b). Since n is
divisible by p, this diagonal matrix is a scalar matrix. If a conjugate of ¢ is a
scalar matrix, so is the matrix ¢. This contradiction completes the proof. O

The exact sequence Z/n—SU(n) x S'—U(n) induces a fibration of classi-
fying spaces BZ/n— BSU(n) x BS'—BU(n). According to a result of [5],
BSU(n) x BS! is p—equivalent to BU(n) if and only if n is not divisible by
p. In this case, any self-map of BU(n) lifts to a self-map of BSU(n) x BS!
at p. It is known [9] that the admissible map of any self-map of BSU(n) is a
scalar matrix. Thus the admissible map for BU(n) must be diagonalizable.
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