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Abstract

An admissible map for classifying spaces can be regarded as a matrix. We
discuss the diagonalizability of such matrices as well as the Jordan canonical
forms. Sometimes a high–dimensional behavior characterizes the induced
homomorphism of the cohomology. We will ask if such a thing happens in
our case. A relationship between the diagonalizability of admissible maps
and the reducibility of classifying spaces is also discussed for unitary groups.
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We first recall admissible maps for the rational cohomology, [1]. As explained
in [8], it is well–known that, for a connected compact Lie group G, the ra-
tional cohomology H∗(BG,Q) is isomorphic to the ring of invariants under
the action of the Weyl group W (G). Consequently, for connected compact
Lie groups G and K with maximal tori TG and TK respectively, we see
H∗(BG;Q) ∼= H∗(BTG;Q)W (G) and H∗(BK;Q) ∼= H∗(BTK ;Q)W (K) . For
any map f : BG−→BK we have the commutative diagram:

H∗(BTK ;Q)
ϕf−−−−→ H∗(BTG;Q)�

�
H∗(BK;Q) −−−−→

f∗
H∗(BG;Q)

Here ϕ = ϕf is admissible ; namely for any w ∈ W (G) we can find w′ ∈ W (K)
such that wϕ = ϕw′ .

Recall next that H∗(BTn;Q) = Q[t1, t2, · · · , tn] is a polynomial ring in n vari-
ables of degree 2. So the admissible map ϕ can be regarded as a rank(G) ×
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rank(K) matrix, since the ring homomorphism is determined by a linear map
on the vector space H2(BTK ;Q). For instance, the admissible self–maps for
H∗(BU(n);Fp) ∼= H∗(BTn;Fp)

Σn are as follows:

ϕ =

(
a1 a2 ··· an· · ·
· · ·
· · ·
a1 a2 ··· an

)
or




a b ··· b
b a ··· b

. . .
b b ··· a




Notice, [2], that the rational cohomology can be replaced by the mod p cohomol-
ogy when p is large. We note that H∗(BG;Fp) is isomorphic to H∗(BTG;Fp)

W (G)

, for instance, if p does not divide the order of W (G). Any map from H∗(BTn;Fp)
to H∗(BTm;Fp) over the Steenrod algebra Ap can be determined by a matrix.
Conversely, any matrix gives such an Ap–map.

In §1, for an admissible map ϕ : H∗(BTn;Fp)−→H∗(BTn;Fp), we consider the
case that the n×n matrix ϕ2 : H

2(BTn;Fp)−→H2(BTn;Fp) is diagonalizable.
We will show that, in this case, any matrix ϕ2k : H2k(BTn;Fp)−→H2k(BTn;Fp)
is also diagonalizable, and that if ϕ2 is invertible, so is ϕ2k as a consequence. In
§2, we consider the case that ϕ2 is not diagonalizable. Even though ϕ2 is in a
Jordan canonical form, ϕ2k need not be so. Therefore we will find an invertible
matrix P2k such that the conjugate P−1

2k ϕ2kP2k is a Jordan canonical form. The
authors announced some results related to this work at regional meetings of the
Japan Math. Soc., [11], [6] and [7]. A high–dimensional behavior is discussed in
§3. We consider a converse to Lemma 1.1 and see that it doesn’t seem to be the
case in a narrow sense. Finally in §4, the diagonalizability of admissible maps
and the reducibility of classifying spaces are considered. It turns out that, for
unitary groups, both phenomena happen under the same condition.

1 Diagonalizable Matrices

An admissible map ϕ : H∗(BTn;Fp)−→H∗(BTn;Fp) can be regarded as a
square matrix on each H2k(BTn;Fp). Let A denote the matrix presentation
of ϕ2 , and let ρk(A) denote the matrix presentation of ϕ2k . For n = 2, if

A =

(
a b
c d

)
, then ρ2(A) =




a2 2ab b2

ac ad+ bc bd
c2 2cd d2


. Because if ϕ2(t1) =

at1 + bt2 , then ϕ4(t
2
1) = a2t21 + 2abt1t2 + b2t22 and so on. We note that if the

matrix A is diagonal, so is ρk(A) for all k ≥ 1.
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Lemma 1.1 If the matrix presentation of ϕ2 on H2(BTn;Fp) is diagonaliz-
able, so is that of ϕ2k for all k ≥ 1.

Proof For the matrix presentation A of ϕ2 , we see the following:

ρk(PAP−1) = ρk(P )ρk(A)ρk(P
−1).

H∗(BTn;Fp)
A−−−−→ H∗(BTn;Fp)

P−1

�
�P

H∗(BTn;Fp) −−−−−→
PAP−1

H∗(BTn;Fp)

If A is diagonalizable, there is an invertible matrix P such that PAP−1 is a
diagonal matrix. Thus ρk(PAP−1) is a diagonal matrix.

There are admissible maps that are not diagonalizable. For instance, let A =(
2 −1
1 −2

)
and ϕ2 = ρ1(A). For the exceptional Lie group G2 , the map ϕ is

admissible, [8, Proposition 2].

H∗(BT 2;Q)
ϕ−−−−→ H∗(BT 2;Q)�

�
H∗(BG2;Q) −−−−→ H∗(BG2;Q)

Since A2 =

(
3 0
0 3

)
, we see that ϕ2 = 0 at p = 3. So we consider the map

ϕ : H∗(BT 2;F3)−→H∗(BT 2;F3). If ϕ2 were diagonalizable, then PAP−1 =(
λ1 0
0 λ2

)
for an invertible matrix P . Note that A2 = 0 implies (PAP−1)2 =

0. This would mean that λ1 = λ2 = 0. This is a contradiction.

Concerning the determinants, one can show the following:

Lemma 1.2 det ϕ2k = (det ϕ2)
k(k+1)

2 for all k ≥ 1.
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2 Jordan canonical form

Next we consider the maps ϕ : H∗(BT 2;Fp)−→H∗(BT 2;Fp) when ϕ2 is not

diagonalizable. Particularly we will treat the case ϕ2 =

(
λ 1
0 λ

)
, which means

that ϕ2(t1) = λt1 + t2 , ϕ2(t2) = λt2 for H∗(BT 2;Fp) = Fp[t1, t2].

For instance, we see that ϕ4 =



λ2 2λ 1
0 λ2 λ
0 0 λ2


 =


2C2λ

2
2C1λ 2C0

0 1C1λ
2

1C0λ
0 0 0C0λ

2


,

where nCk denotes the binomial coefficient, as usual. We note that P−1
4 ϕ4P4 =


λ2 1 0
0 λ2 1
0 0 λ2


 if we take P4 =



1 1

2λ2 0
0 1

2λ 0
0 0 1

2λ2


.

Theorem 1 For the two square matrices of size n+ 1

J2n =




λn 1 . . . 0
λn 1 . . . 0

. . .
. . . 0
. . .

. . . 0

. . . 1
0 . . . λn




and ϕ2n =




nCnλ
n

nCn−1λ
n−1 . . . nC0λ

1

n−1Cn−1λ
n

n−1Cn−2λ
n−1 . . . n−1C0λ

2

n−2Cn−2λ
n . . .

. . .
. . .

1C1λ
n

1C0λ
n−1

0 . . . 0C0λ
n



,

P−1
2n ϕ2nP2n = J2n holds if P2n is the following upper triangular matrix:
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P2n =




1≤q≤n−2� �� �
n−p∑
i=1

n−p+1Ciλ
n−i(p+ i, q + 1)

q=n−1� �� �
n−p∑
i=1

n−p+1Ciλ
n+p−1 1

n!λn(n−1)

q=n� �� �
λ0

n!λn(n−1)

q=n+1����
0

...
... λ1

n!λn(n−1)

...
...

λn−1

n!λn(n−1) 0

0 0 0 1
n!λn(n−1)




Here (p, q) means the (p, q)–entry of P2n . The left column means the type of
the first n− 2 columns so that each entry varies upon q for 1 ≤ q ≤ n− 2. For
instance, P10 is given as follows:

P10 =




120λ20

120λ20
240λ15

120λ20
150λ10

120λ20
30λ5

120λ20
1λ0

120λ20 0

0 24λ16

120λ20
36λ11

120λ20
14λ6

120λ20
1λ1

120λ20 0

0 0 6λ12

120λ20
6λ7

120λ20
1λ2

120λ20 0

0 0 0 2λ8

120λ20
1λ3

120λ20 0

0 0 0 0 1λ4

120λ20 0
0 0 0 0 0 1

120λ20




Proof It is enough to show ϕ2nP2n = P2nJ2n . We will determine the columns
of P2n in the reversed order, since we need the k+1-st column to find the k -th
column for k = 1, 2, · · · , n.

First consider the n+1-st column. Multiplying both sides by n!λn(n−1) we will
show the following:

ϕ2n




0
...
0
1




� �� �
q=n+1

= n!λn(n−1)P2n




0
...
0
1
λn




� �� �
q=n+1

To do so, we compute both sides as follows:
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ϕ2n




0
...
0
1


 =




λ0

λ1

...
λn


 , and n!λn(n−1)P2n




0
...
0
1
λn




=




λ0

λ1

...
λn




Consequently we see that the both n+ 1-st columns are the same.

Next consider the n-th column. Again multiplying by n!λn(n−1) we will show
the following:

ϕ2n




λ0

...
λn−1

0




� �� �
q=n

= n!λn(n−1)P2n




0
...
0
1
λn

0




� �� �
q=n

To do so once again, we compute both sides as follows:

ϕ2n




λ0

...
λn−1

0


 =




nCnλ
nλ0 +n Cn−1λ

n−1λ1 + · · ·+n C1λ
1λn−1

n−1Cn−1λnλ1+n−1Cn−2λn−1λ2+···+n−1C1λ2λn−1

...

1C1λ
nλn−1

0




=




λn
n∑

i=1

nCi

λn+1
n−1∑
i=1

n−1Ci

...

λ2n−1
1∑

i=1

1Ci

0
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n!λn(n−1)P2n




0
...
0
1
λn

0




=




n−1∑
i=1

nCiλ
n + λ0λn

n−2∑
i=1

n−1Ciλ
n+1 + λ1λn

...
0 + λn−1λn

0




=




λn
n∑

i=1

nCi

λn+1
n−1∑
i=1

n−1Ci

...

λ2n−1
1∑

i=1

1Ci

0




Next consider the n − 1-st column. Again multiplying by n!λn(n−1) we will
show the following:

ϕ2n




n−p∑
i=1

n−p+1Ciλ
n+p+1

...
n−p∑
i=1

n−p+1Ciλ
n+p+1

0
0




� �� �
q=n−1

= n!λn(n−1)P2n




0
...
0
1
λn

0
0




� �� �
q=n−1

　

To do so, we compute both sides as follows:

ϕ2n




n−p∑
i=1

n−p+1Ciλ
n+p+1

.

.

.
n−p∑
i=1

n−p+1Ciλ
n+p+1

0
0
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=




(nCnλn
n−1∑
i=1

nCiλ
n
) + (nCn−1λ

n−1
n−2∑
i=1

n−1Ciλ
n+1

) + (nCn−2λ
n−2

n−3∑
i=1

n−2Ciλ
n+2

)+

· · · + (nC2λ
2

n−(n−1)∑
i=1

2Ciλ
n+(n−2)

) + (nC1λ
1 · 0) + (nC0λ

0 · 0)

(n−1Cn−1λ
n

n−2∑
i=1

n−1Ciλ
n+1

) + (n−1Cn−2λ
n−1

n−3∑
i=1

n−2Ciλ
n+2

) + (n−1Cn−3λ
n−2

n−4∑
i=1

n−3Ciλ
n+3

)+

· · · + (n−1C2λ
3

n−(n−1)∑
i=1

2Ciλ
2n−2

) + (n−1C1λ
2 · 0) + (n−1C0λ

1 · 0)

.

.

.

(3C3λ
n

n−(n−2)∑
i=1

3Ciλ
2n−3

) + (3C2λ
n−1

n−(n−1)∑
i=1

2Ciλ
2n−2

) + (3C1λ
n−2 · 0) + (3C0λ

n−3 · 0)

(2C2λ
n

n−(n−1)∑
i=1

2Ciλ
2n−2

) + (2C1λ
n−1 · 0) + (2C0λ

n−2 · 0)

(1C1λ
n · 0) + (1C0λ

n−1 · 0)
(0C0λ

n · 0)




n!λn(n−1)P2n




0
...
0
1
λn

0
0




=




{
n−1∑
i=1

nCiλ
n−i(1 + i, n− 1)}+ {

n−1∑
i=1

nCiλ
n}λn

{
n−2∑
i=1

n−1Ciλ
n−i(2 + i, n− 1)}+ {

n−2∑
i=1

n−1Ciλ
n+1}λn

...

{
2∑

i=1

3Ciλ
n−i(n− 2 + i, n− 1)}+ {

2∑
i=1

3Ciλ
2n−3}λn

0 + {
1∑

i=1

2Ciλ
2n−2}λn

0
0
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=




{nC1λ
n−1(

n−2∑
i=1

n−1Ciλ
n+1)}+ {nC2λ

n−2(

n−3∑
i=1

n−2Ciλ
n+2)}+ · · ·+

{nCn−2λ
2(

1∑
i=1

2Ciλ
2n−2)}+ {nCn−1λ

1 · 0}+ {
n−1∑
i=1

nCiλ
n}λn

{n−1C1λ
n−1(

n−3∑
i=1

n−2Ciλ
n+2)}+ {n−1C2λ

n−2(

n−4∑
i=1

n−3Ciλ
n+3)}+ · · ·+

{n−1Cn−3λ
3(

1∑
i=1

2Ciλ
2n−2)}+ {n−1Cn−2λ

2 · 0}+ {
n−2∑
i=1

n−1Ciλ
n+1}λn

...

{3C1λ
n−1(

1∑
i=1

2Ciλ
2n−2)}+ {3C2λ

n−2 · 0}+ {
2∑

i=1

3Ciλ
2n−3}λn

{
1∑

i=1

2Ciλ
2n−2}λn

0
0




Consequently we see that the both n − 1-st columns are the same, since

nCa = nCn−a .

Next we consider the n− 2-nd column, and show the following:

ϕ2n




n−1∑
i=1

nCiλ
n−i(1 + i, n− 1)

n−2∑
i=1

n−1Ciλ
n−i(2 + i, n− 1)

...
0
0




� �� �
q=n−2

= n!λn(n−1)P2n




0
...
0
1
λn

0
0
0




� �� �
q=n−2

To do so, we compute the both sides as follows. At the last step, for 2 ≤ j ≤
n− 2, the entries (j, n− 2) will be replaced by sums of (j + i, n− 1)′s.

ϕ2n




n−1∑
i=1

nCiλ
n−i(1 + i, n− 1)

n−2∑
i=1

n−1Ciλ
n−i(2 + i, n− 1)

...
0
0
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=




{nCnλn
n−1∑
i=1

nCiλ
n−i(1 + i, n− 1)}+ {nCn−1λ

n−1
n−2∑
i=1

n−1Ciλ
n−i(2 + i, n− 1)}+ · · ·

· · ·+ {nC3λ3
2∑

i=1

3Ciλ
n−i(n− 2 + i, n− 1)}+ 0 + 0 + 0

{n−1Cn−1λn
n−2∑
i=1

n−1Ciλ
n−i(2 + i, n− 1)}+ {n−1Cn−2λ

n−1
n−3∑
i=1

n−2Ciλ
n−i(3 + i, n− 1)}+ · · ·

· · ·+ {n−1C3λ4
2∑

i=1

3Ciλ
n−i(n− 2 + i, n− 1)}+ 0 + 0 + 0

..

.

{4C4λn
3∑

i=1

4Ciλ
n−i(n− 3 + i, n− 1)}+ {4C3λ

n−1
2∑

i=1

3Ciλ
n−i(n− 2 + i, n− 1)}

+0 + 0 + 0

{3C3λn
2∑

i=1

3Ciλ
n−i(n− 2 + i, n− 1)}+ 0 + 0 + 0

0
0
0




n!λn(n−1)P2n




0
..
.
0
1
λn

0
0
0




=




{
n−1∑
i=1

nCiλ
n−i(1 + i, n− 2)}+ {

n−1∑
i=1

nCiλ
n−i(1 + i, n− 1)}λn

{
n−2∑
i=1

n−1Ciλ
n−i(2 + i, n− 2)}+ {

n−2∑
i=1

n−1Ciλ
n−i(2 + i, n− 1)}λn

.

..

{
3∑

i=1

4Ciλ
n−i(n− 3 + i, n− 2)}+ {

3∑
i=1

4Ciλ
n−i(n− 3 + i, n− 1)}λn

0 + {
2∑

i=1

3Ciλ
n−i(n− 2 + i, n− 1)}λn

0
0
0
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=




{nC1λ
n−1(2, n − 2)} + {nC2λ

n−2(3, n − 2)} + · · · + {nCn−3λ
3(n − 2, n − 2)}

+0 + 0 + {
n−1∑
i=1

nCiλ
n−i

(1 + i, n − 1)}λn

{n−1C1λ
n−1(3, n − 2)} + {n−1C2λ

n−2(4, n − 2)} + · · · + {n−1Cn−4λ
4(n − 2, n − 2)}

+0 + 0 + {
n−2∑
i=1

n−1Ciλ
n−i

(2 + i, n − 1)}λn

.

.

.

{4C1λ
n−1(n − 2, n − 2)} + 0 + 0 + {

3∑
i=1

4Ciλ
n−i

(n − 3 + i, n − 1)}λn

0 + 0 + {
2∑

i=1

3Ciλ
n−i

(n − 2 + i, n − 1)}λn

0
0
0




=




{nC1λ
n−1

n−2∑
i=1

n−1Ciλ
n−i

(2 + i, n − 1)} + {nC2λ
n−2

n−3∑
i=1

n−2Ciλ
n−i

(3 + i, n − 1)} + · · ·

· · · + {nCn−3λ
3

2∑
i=1

3Ciλ
n−i

(n − 2 + i, n − 1)} + 0 + 0 + {
n−1∑
i=1

nCiλ
n−i

(1 + i, n − 1)}λn

{n−1C1λ
n−1

n−3∑
i=1

n−2Ciλ
n−i

(3 + i, n − 1)} + {n−1C2λ
n−2

n−4∑
i=1

n−3Ciλ
n−i

(4 + i, n − 1)} + · · ·

· · · + {n−1Cn−4λ
4

2∑
i=1

3Ciλ
n−i

(n − 2 + i, n − 1)} + 0 + 0 + {
n−2∑
i=1

n−1Ciλ
n−i

(2 + i, n − 1)}λn

.

.

.

{4C1λ
n−1

2∑
i=1

3Ciλ
n−i

(n − 2 + i, n − 1)} + 0 + 0 + {
3∑

i=1

4Ciλ
n−i

(n − 3 + i, n − 1)}λn

0 + 0 + {
2∑

i=1

3Ciλ
n−i

(n − 2 + i, n − 1)}λn

0
0
0




Consequently we see that the both are the same. And a similar argument goes
on for each step. One can complete the proof.

3 High–dimennsional behavior

It is well-known that classifying spaces BG have rigid structure so that there
are relatively few maps between them. Sometimes the maps are controlled by
mod p cohomology. The fusion version of the rigidity of BG can be found in
recent work of [4] and [3].

A result of Mislin [10] states that for a homomorphsim ρ : G−→K , if there is a
non–negative integer n such that (Bρ)∗ : Hj(BK;Z)−→Hj(BG;Z) is an iso-
morphism for all j ≥ n, then (Bρ)∗ is an isomorphism for all j ≥ 0. This means
that a high–dimensional behavior characterizes the induced homomorphsim of

11
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the cohomology. Here we ask if ϕ2j : H2j(BT 2;Fp)−→H2j(BT 2;Fp) is diago-
nalizable, is ϕ2(j−1) also diagonalizable ? This is a converse to Lemma 1.1. We
will see that the answer turns out to be negative.

First note that if A ∈ GL(n,Fp) is diagonalizable, then Ap−1 must be the
identity matrix. Thus any invertible matrix whose order exceeds p − 1 can
not be diagonalizable. Here we consider anti–diagonal matrices. We denote
an n× n anti–diagonal matrix by anti−d(α1, α2, · · · , αn). For instance we see(

0 α2

α1 0

)
= anti−d(α1, α2). If an admissible map ϕ2 = anti−d(c, b) =

(
0 b
c 0

)
, then ϕ2n = anti−d(cn , cn−1 b, · · · , bn). The product of two anti–

diagonal matrices is a diagonal matrix. And we denote an n × n diagonal

matrix by d(β1, β2, · · · , βn) so that

(
β1 0
0 β2

)
= d(β1, β2). Suppose B =

anti−d(α1, α2, · · · , αn). Then B2 = d(αnα1, αn−1α2, · · · , α1αn).

The unit group of Fp is isomorphic to the cyclic group Z/(p − 1). Let ζ be
a generator of Z/(p − 1). If ϕ2 = anti−d(ζ, 1 ), then ϕ2

2 = d(ζ, ζ). Hence the
order of ϕ2 is 2(p− 1). This means that ϕ2 is not diagonalizable.

Proposition 3.1 Suppose ϕ2 = anti−d(ζ, 1 ). Then we have the following:

(1) ϕ4 is diagonalizable.

(2) If p− 1 is a power of 2, then ϕ4n−2 is not diagonalizable for all n ≥ 1.

Proof (1) First we note that A = ϕ4 = anti−d(ζ2 , ζ, 1 ). If P =




1 0 1
0 1 0
ζ 0 −ζ


,

then P−1AP = d(ζ, ζ,−ζ).

(2) Next we note that ϕ2
2m = d(ζm , ζm , · · · , ζm), and hence ϕ2

4n−2 =

d(ζ2n−1 , ζ2n−1 , · · · , ζ2n−1 ). Since p−1 is a power of 2, the odd number 2n−1
is prime to p− 1. Consequently the order of ζ2n−1 is p− 1 so that the order of
ϕ4n−2 is 2(p− 1). Therefore ϕ4n−2 can not be diagonalizable for all n ≥ 1

When p = 3 and ϕ2 = anti−d(−1 , 1 ), we see that ϕ4n = anti−d(1 ,−1 , · · · ,−1 , 1 )
is a square matrix of size 2n+ 1. It is easy to show that each ϕ4n is diagonal-
izable.

12



Matrices and mod p admissible maps for classifying spaces（K. Ishiguro et al.） ― 97 ―

4 The diagonalizability of admissible maps and the
reducibility of classifying spaces

We consider if the admissible self–maps for H∗(BU(n);Fp) ∼= H∗(BTn;Fp)
Σn

are diagonalizable at p:

ϕ =




a b · · · b

b
. . .

. . .
...

...
. . .

. . . b
b · · · b a




Proposition 4.1 The above n × n matrix ϕ with b ̸= 0 is diagonalizable at
p if and only if n is not divisible by p.

Proof Let P =




1 0 · · · 0 1

0 1
. . .

...
...

...
. . .

. . . 0
...

0 · · · 0 1 1
−1 · · · · · · −1 1



.

Since det P = n , this matrix P is invertible if n is not divisible by p. One can
see that P−1ϕP is the diagonal matrix d(a− b, · · · , a− b, a + (n− 1)b).

Conversely, assume that n is divisible by p. If ϕ was diagonalizable, its conju-
gate would be the diagonal matrix d(a− b, · · · , a− b, a+ (n− 1)b). Since n is
divisible by p, this diagonal matrix is a scalar matrix. If a conjugate of ϕ is a
scalar matrix, so is the matrix ϕ. This contradiction completes the proof.

The exact sequence Z/n−→SU(n) × S1−→U(n) induces a fibration of classi-
fying spaces BZ/n−→BSU(n) × BS1−→BU(n). According to a result of [5],
BSU(n) × BS1 is p–equivalent to BU(n) if and only if n is not divisible by
p. In this case, any self–map of BU(n) lifts to a self–map of BSU(n) × BS1

at p. It is known [9] that the admissible map of any self–map of BSU(n) is a
scalar matrix. Thus the admissible map for BU(n) must be diagonalizable.
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